![河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第1頁](http://file4.renrendoc.com/view/6a4b3c8cf3307ba7d72a257c46829063/6a4b3c8cf3307ba7d72a257c468290631.gif)
![河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第2頁](http://file4.renrendoc.com/view/6a4b3c8cf3307ba7d72a257c46829063/6a4b3c8cf3307ba7d72a257c468290632.gif)
![河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第3頁](http://file4.renrendoc.com/view/6a4b3c8cf3307ba7d72a257c46829063/6a4b3c8cf3307ba7d72a257c468290633.gif)
![河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第4頁](http://file4.renrendoc.com/view/6a4b3c8cf3307ba7d72a257c46829063/6a4b3c8cf3307ba7d72a257c468290634.gif)
![河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題含解析_第5頁](http://file4.renrendoc.com/view/6a4b3c8cf3307ba7d72a257c46829063/6a4b3c8cf3307ba7d72a257c468290635.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河北省秦皇島撫寧區(qū)臺營學(xué)區(qū)2024屆中考數(shù)學(xué)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,線段AB兩個端點的坐標(biāo)分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標(biāo)分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)2.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.83.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.4.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.5.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學(xué)操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學(xué)將機器人運行時間設(shè)為t秒,機器人到點A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當(dāng)t=3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④6.如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),則圖中點C對應(yīng)的數(shù)是()A.﹣2 B.0 C.1 D.47.小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確8.下列方程中,沒有實數(shù)根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=09.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形10.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結(jié)論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:8x2-8xy+2y2=_________________________.12.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.13.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+bx+c=0的解為_____.15.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數(shù)y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.16.將數(shù)字37000000用科學(xué)記數(shù)法表示為_____.17.9的算術(shù)平方根是.三、解答題(共7小題,滿分69分)18.(10分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關(guān)系?請證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當(dāng)BB′=6時,求PB′的長度.19.(5分)如圖,矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當(dāng)S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.20.(8分)如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).21.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.22.(10分)近年來,新能源汽車以其舒適環(huán)保、節(jié)能經(jīng)濟的優(yōu)勢受到熱捧,隨之而來的就是新能汽車銷量的急速增加,當(dāng)前市場上新能漂汽車從動力上分純電動和混合動力兩種,從用途上又分為乘用式和商用式兩種,據(jù)中國汽車工業(yè)協(xié)會提供的信息,2017年全年新能源乘用車的累計銷量為57.9萬輛,其中,純電動乘用車銷量為46.8萬輛,混合動力乘用車銷量為11.1萬輛;2017年全年新能源商用車的累計銷量為19.8萬輛,其中,純電動商用車銷量為18.4萬輛,混合動力商用車銷量為1.4萬輛,請根據(jù)以上材料解答下列問題:(1)請用統(tǒng)計表表示我國2017年新能源汽車各類車型銷量情況;(2)小穎根據(jù)上述信息,計算出2017年我國新能源各類車型總銷量為77.7萬輛,并繪制了“2017年我國新能源汽車四類車型銷量比例”的扇形統(tǒng)計圖,如圖1,請你將該圖補充完整(其中的百分?jǐn)?shù)精確到0.1%);(3)2017年我國新能源乘用車銷量最高的十個城市排名情況如圖2,請根據(jù)圖2中信息寫出這些城市新能源乘用車銷售情況的特點(寫出一條即可);(4)數(shù)據(jù)顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準(zhǔn),參加社會實踐的大學(xué)生小王想對其中兩個廠家進行深入調(diào)研,他將四個完全相同的乒乓球進行編號(用“1,2,3,4”依次對應(yīng)上述四個廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個乒乓球,根據(jù)乒乓球上的編號決定要調(diào)研的廠家.求小王恰好調(diào)研“比亞迪”和“江淮”這兩個廠家的概率.23.(12分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當(dāng)半圓與的邊相切時,求平移距離.24.(14分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標(biāo);若△ABC的面積為4,求的解析式.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標(biāo)乘以得出即可.【題目詳解】解:∵線段AB兩個端點的坐標(biāo)分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標(biāo)為:(2,2),(3,1).故選C.【題目點撥】本題考查位似變換;坐標(biāo)與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.2、B【解題分析】
首先證明:OE=12【題目詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【題目點撥】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形的中位線定理,屬于中考??碱}型.3、A【解題分析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【題目詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【題目點撥】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.4、C【解題分析】
左視圖就是從物體的左邊往右邊看.小正方形應(yīng)該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應(yīng)該是大正方形,故D錯誤,所以C正確.故此題選C.5、C【解題分析】
根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結(jié)合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結(jié)合圖象易得③正確.【題目詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當(dāng)t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當(dāng)從B出發(fā)時,不經(jīng)過點E,故④錯誤.故選:C.【題目點撥】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.6、C【解題分析】【分析】首先確定原點位置,進而可得C點對應(yīng)的數(shù).【題目詳解】∵點A、B表示的數(shù)互為相反數(shù),AB=6∴原點在線段AB的中點處,點B對應(yīng)的數(shù)為3,點A對應(yīng)的數(shù)為-3,又∵BC=2,點C在點B的左邊,∴點C對應(yīng)的數(shù)是1,故選C.【題目點撥】本題主要考查了數(shù)軸,關(guān)鍵是正確確定原點位置.7、A【解題分析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【題目詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【題目點撥】本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.8、D【解題分析】
分別計算各方程的根的判別式的值,然后根據(jù)判別式的意義判定方程根的情況即可.【題目詳解】A、△=(﹣2)2﹣4×1×0=4>0,方程有兩個不相等的實數(shù)根,所以A選項錯誤;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有兩個不相等的實數(shù)根,所以B選項錯誤;C、△=(﹣2)2﹣4×1×1=0,方程有兩個相等的實數(shù)根,所以C選項錯誤;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程沒有實數(shù)根,所以D選項正確.故選D.9、C【解題分析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.10、B【解題分析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據(jù)圖像可知當(dāng)x<1時,y隨x增大而增大,當(dāng)x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y1,故(4)不正確;根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標(biāo)為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax1+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.
拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】
提取公因式1,再對余下的多項式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【題目詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【題目點撥】此題考查的是提取公因式法和公式法分解因式,本題關(guān)鍵在于提取公因式可以利用完全平方公式進行二次因式分解.12、【解題分析】試題解析:根據(jù)題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.13、1【解題分析】
設(shè)HG=x,根據(jù)相似三角形的性質(zhì)用x表示出KD,根據(jù)矩形面積公式列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)計算即可.【題目詳解】解:設(shè)HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【題目點撥】本題考查的是相似三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.14、x1=1,x2=﹣1.【解題分析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標(biāo),從而求得關(guān)于x的一元二次方程﹣x2+bx+c=0的解.【題目詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標(biāo)為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【題目點撥】本題考查了二次函數(shù)與一元二次方程的關(guān)系.一元二次方程-x2+bx+c=0的解實質(zhì)上是拋物線y=-x2+bx+c與x軸交點的橫坐標(biāo)的值.15、1【解題分析】
利用對稱性可設(shè)出E、F的兩點坐標(biāo),表示出△DEF的面積,可求出k的值.【題目詳解】解:設(shè)AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【題目點撥】本題主要考查反比例函數(shù)與正方形和三角形面積的運用,表示出E和F的坐標(biāo)是關(guān)鍵.16、3.7×107【解題分析】
根據(jù)科學(xué)記數(shù)法即可得到答案.【題目詳解】數(shù)字37000000用科學(xué)記數(shù)法表示為3.7×107.【題目點撥】本題主要考查了科學(xué)記數(shù)法的基本概念,解本題的要點在于熟知科學(xué)記數(shù)法的相關(guān)知識.17、1.【解題分析】
根據(jù)一個正數(shù)的算術(shù)平方根就是其正的平方根即可得出.【題目詳解】∵,∴9算術(shù)平方根為1.故答案為1.【題目點撥】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的概念是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解題分析】
(1)①當(dāng)△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【題目詳解】(1)①當(dāng)△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設(shè)PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【題目點撥】本題屬于四邊形綜合題,主要考查了折疊的性質(zhì),等邊三角形的性質(zhì),正方形的判定與性質(zhì)以及勾股定理的綜合運用,解題的關(guān)鍵是設(shè)要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切危\用勾股定理列出方程求出答案.19、(1);(2)①,當(dāng)m=5時,S取最大值;②滿足條件的點F共有四個,坐標(biāo)分別為,,,,【解題分析】
(1)將A、C兩點坐標(biāo)代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;
(2)①先用m表示出QE的長度,進而求出三角形的面積S關(guān)于m的函數(shù);
②直接寫出滿足條件的F點的坐標(biāo)即可,注意不要漏寫.【題目詳解】解:(1)將A、C兩點坐標(biāo)代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當(dāng)m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標(biāo)為(3,8),Q(3,4),當(dāng)∠FDQ=90°時,F(xiàn)1(,8),當(dāng)∠FQD=90°時,則F2(,4),當(dāng)∠DFQ=90°時,設(shè)F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標(biāo)分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【題目點撥】本題考查二次函數(shù)的綜合應(yīng)用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結(jié)合數(shù)學(xué)思想的運用,同學(xué)們要加強訓(xùn)練,屬于中檔題.20、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,)【解題分析】
(1)將點A和點C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標(biāo);(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標(biāo),從而得到點P的縱坐標(biāo),然后由拋物線的解析式可求得點P的坐標(biāo).【題目詳解】解:(1)∵將點A和點C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,).21、(1)y=-,y=-2x-1(2)1【解題分析】試題分析:(1)將點A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點A的坐標(biāo)以及反比例函數(shù)解析式,再將點B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點C,根據(jù)一次函數(shù)解析式求出點C的坐標(biāo),從而得到點OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標(biāo)為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣1;(2)設(shè)AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數(shù)與一次函數(shù)的交點問題.22、(1)統(tǒng)計表見解析;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年住宅裝修居間服務(wù)合同模板
- 2025年農(nóng)業(yè)策劃與技術(shù)信息交流合作規(guī)劃協(xié)議
- 2025年企業(yè)戰(zhàn)略融資及風(fēng)險投資咨詢服務(wù)合同
- 2025年個體勞動者之間的互援協(xié)議
- 2025年產(chǎn)品市場發(fā)展戰(zhàn)略合作協(xié)議
- 2025年企業(yè)增資擴股合同范本解析
- 2025年企業(yè)物業(yè)管理外包合同范文文本
- 2025年勞動合同續(xù)簽與留用規(guī)定概要
- 2025年住房租賃協(xié)議樣本文本
- 2025年飯食店鋪股權(quán)買賣合同樣本
- 2025年環(huán)衛(wèi)工作計劃
- 湖北省武漢市2024-2025學(xué)年度高三元月調(diào)考英語試題(含答案無聽力音頻有聽力原文)
- 品質(zhì)巡檢培訓(xùn)課件
- 一年級下冊勞動《變色魚》課件
- 商務(wù)星球版地理八年級下冊全冊教案
- 天津市河西區(qū)2024-2025學(xué)年四年級(上)期末語文試卷(含答案)
- 2023青島版數(shù)學(xué)三年級下冊全冊教案
- 2025年空白離婚協(xié)議書
- 校長在行政會上總結(jié)講話結(jié)合新課標(biāo)精神給學(xué)校管理提出3點建議
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 《零起點學(xué)中醫(yī)》課件
評論
0/150
提交評論