![山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/fd848627be9c0796e9823ef692cfc5fd/fd848627be9c0796e9823ef692cfc5fd1.gif)
![山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/fd848627be9c0796e9823ef692cfc5fd/fd848627be9c0796e9823ef692cfc5fd2.gif)
![山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/fd848627be9c0796e9823ef692cfc5fd/fd848627be9c0796e9823ef692cfc5fd3.gif)
![山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/fd848627be9c0796e9823ef692cfc5fd/fd848627be9c0796e9823ef692cfc5fd4.gif)
![山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/fd848627be9c0796e9823ef692cfc5fd/fd848627be9c0796e9823ef692cfc5fd5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省青島市嶗山區(qū)第二中學2024屆高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當且僅當時等號成立D.如果,那么2.已知等差數(shù)列滿足,則等于()A. B.C. D.3.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.24.已知數(shù)列的前項和為,滿足,,,則()A. B.C.,,成等差數(shù)列 D.,,成等比數(shù)列5.設直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.6.已知直線l與拋物線交于不同的兩點A,B,O為坐標原點,若直線的斜率之積為,則直線l恒過定點()A. B.C. D.7.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉(zhuǎn)拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m8.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.9.現(xiàn)有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.10.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.11.如圖,D是正方體的一個“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當AC與PQ所成角為最小時,()A. B.C. D.212.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若過點和的直線與直線平行,則_______14.直線被圓所截得的弦的長為_____15.若復數(shù)z=為純虛數(shù)(),則|z|=_____.16.已知數(shù)列的通項公式為,記數(shù)列的前項和為,則__________,的最小值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知P,Q的坐標分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設點M的軌跡為曲線C.(1)求曲線的方程;(2)設為坐標原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當,且滿足時,求面積的取值范圍.18.(12分)設等差數(shù)列的前項和為,為各項均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項公式;(2)設,數(shù)列的前項和為,求證:19.(12分)如圖,已知直三棱柱中,,,E,F(xiàn)分別為AC和的中點,D為棱上的一點.(1)證明:;(2)當平面DEF與平面所成的銳二面角的余弦值為時,求點B到平面DFE距離.20.(12分)已知數(shù)列為等差數(shù)列,為其前n項和,若,(1)求數(shù)列的首項和公差;(2)求的最小值.21.(12分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且,,成等比數(shù)列,求的值22.(10分)已知動圓過點且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關系,可得即可得答案.【詳解】設圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當且僅當時等號成立,所以對任意實數(shù)和,有,當且僅當時等號成立.故選:C2、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.3、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題4、C【解析】寫出數(shù)列前幾項,觀察規(guī)律,找到數(shù)列變化的周期,再依次去判斷各項的說法即可解決.【詳解】數(shù)列中,,,,則此數(shù)列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數(shù)列的各項是周期為6數(shù)值循環(huán)重復的一列數(shù),選項A:,,則.判斷錯誤;選項B:由,可知當時,.判斷錯誤;選項C:,則,即,,成等差數(shù)列.判斷正確;選項D:,,則,,即,,不能構(gòu)成等比數(shù)列.判斷錯誤.故選:C5、C【解析】先求出,的坐標,再求中點坐標,利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.6、A【解析】設出直線方程,聯(lián)立拋物線方程,得到,進而得到的值,將直線的斜率之積為,用A,B點坐標表示出來,結(jié)合的值即可求得答案.【詳解】設直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當時,,即直線l恒過定點,故選:A.7、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.8、B【解析】根據(jù)基本不等式進行求解即可.【詳解】因為正數(shù)x,y,所以,當且僅當時取等號,即時,取等號,而,所以解得,故選:B9、D【解析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數(shù),以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數(shù)為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D10、A【解析】將利用、、表示,再利用空間向量的加法可得出關于、、的表達式,進而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.11、C【解析】根據(jù)題意,建立空間直角坐標系,求得AC與PQ夾角的余弦值關于點坐標的函數(shù)關系,求得角度最小時點的坐標,即可代值計算求解結(jié)果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標原點,建立空間直角坐標系如下所示:設,則,不妨設點的坐標為,則,,則,又,設直線所成角為,則,則,令,令,則,令,則,此時.故當時,取得最大值,此時最小,點,則,故,則故選:C.12、B【解析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩直線的位置關系求解.【詳解】因為過點和的直線與直線平行,所以,解得,故答案為:314、【解析】圓轉(zhuǎn)化為標準式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;15、【解析】利用復數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.16、①.②.【解析】首先確定的正負,分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【詳解】令,解得:,則當時,;當時,;當時,;當時,;;,當時,;當時,在上單調(diào)遞減,在上單調(diào)遞增,又,,,當時,;綜上所述:.故答案為:;.【點睛】關鍵點點睛:本題考查含絕對值的數(shù)列前項和的求解問題,解題關鍵是能夠確定數(shù)列的變號項,從而以變號項為分類基準進行分類討論得到數(shù)列的前項和;求解數(shù)列中的最值問題的關鍵是能夠利用數(shù)列與函數(shù)的關系,結(jié)合函數(shù)單調(diào)性和來進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】【小問1詳解】設點,則,整理得曲線的方程:【小問2詳解】因為圓的半徑為1,直線:與圓相切,則,,設,將代入得,,,,,所以,,因為,令,在上單調(diào)減,,所以18、(1)an=n,bn=(2)證明見解析【解析】(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項公式及前n項和公式,列出方程組求解即可得答案;(2)求出,利用裂項相消求和法求出前項和為,即可證明【小問1詳解】解:設等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以19、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用平面DEF與平面所成的銳二面角的余弦值列方程,求得,結(jié)合向量法求得到平面的距離.【小問1詳解】以B為坐標原點,為x軸正方向建立如圖所示的建立空間直角坐標系.設,可得,,,.,.因為,所以.【小問2詳解】,設為平面DEF的法向量,則,即,可取.因為平面的法向量為,所以.由題設,可得,所以.點B到DFE平面距離.20、(1)首項為-2,公差為1;(2).【解析】(1)設出等差數(shù)列的公差,再結(jié)合前n項和公式列式計算作答.(2)由(1)的結(jié)論,探求數(shù)列的性質(zhì)即可推理計算作答.【小問1詳解】設等差數(shù)列首項為,公差為,而為其前n項和,,,于是得:,解得,,所以,.【小問2詳解】由(1)知,,,,數(shù)列是遞增數(shù)列,前3項均為非正數(shù),從第4項起為正數(shù),而,于是得的前2項和與前3項和相等并且最小,所以當或時,.21、(1);(2).【解析】(1)由焦距為,離心率為結(jié)合性質(zhì),列出關于的方程組,求出從而求出橢圓方程;(2)設出直線方程,代入橢圓方程,求出點D、E的坐標,然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過點的直線為,由,得,所以,所以,依題意,因為,,成等比數(shù)列,所以,所以,即,當時,,無解,當時,,解得,所以,解得,所以,當,,成等比數(shù)列時,【點睛】方法點睛(1)求橢圓方程的常用方法:①待定系數(shù)法;②定義法;③相關點法(2)直線與圓錐曲線的綜合問題,常將直線方程代入圓錐曲線方程,從而得到關于(或)的一元二次方程,設出交點坐標),利用韋達定理得出坐標的關系,同時注意判別式大于零求出參數(shù)的范圍(或者得到關于參數(shù)的不等關系),然后將所求轉(zhuǎn)化到參數(shù)上來再求解.如本題及,聯(lián)立即可求解.注意圓錐曲線問題中,常參數(shù)多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年12月2025陜西延安市綜合類事業(yè)單位校園公開招聘41人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025至2030年中國移動存儲產(chǎn)品數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國電腦雕刻刀具專用工具顯微鏡數(shù)據(jù)監(jiān)測研究報告
- 2025年尼龍膜折疊式濾芯項目可行性研究報告
- 2025年圓珠筆芯項目可行性研究報告
- 2025至2030年中國聲光報警驅(qū)動模塊數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年節(jié)溫器蓋項目投資價值分析報告
- 裝修居間服務施工監(jiān)管合同
- 跨境支付居間合作協(xié)議
- 2025至2030年枕式自動包裝機項目投資價值分析報告
- 急性缺血性卒中再灌注治療指南2024解讀
- 醫(yī)院醫(yī)用織物洗滌(租賃)服務方案投標文件
- 《礦山隱蔽致災因素普查規(guī)范》解讀培訓
- 2022年濰坊工程職業(yè)學院單招英語題庫及答案解析
- 中建醫(yī)院幕墻工程專項方案
- 基于OBE理念的世界現(xiàn)代史教學與學生歷史思維培養(yǎng)探究
- TSG11-2020鍋爐安全技術(shù)規(guī)程(現(xiàn)行)
- 一年級20以內(nèi)加減及混合口算練習題
- 中南大學《藥理學》2023-2024學年第一學期期末試卷
- 機電隊技術(shù)員安全生產(chǎn)責任制(3篇)
- 血透機常見報警原因及處理課件
評論
0/150
提交評論