新高考數(shù)學二輪復習重點突破訓練第25講 數(shù)形結(jié)合思想(含解析)_第1頁
新高考數(shù)學二輪復習重點突破訓練第25講 數(shù)形結(jié)合思想(含解析)_第2頁
新高考數(shù)學二輪復習重點突破訓練第25講 數(shù)形結(jié)合思想(含解析)_第3頁
新高考數(shù)學二輪復習重點突破訓練第25講 數(shù)形結(jié)合思想(含解析)_第4頁
新高考數(shù)學二輪復習重點突破訓練第25講 數(shù)形結(jié)合思想(含解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)形結(jié)合思想數(shù)形結(jié)合是把數(shù)或數(shù)量關(guān)系與圖形對應起來,借助圖形來研究數(shù)量關(guān)系或者利用數(shù)量關(guān)系來研究圖形的性質(zhì),是一種重要的數(shù)學思想方法。它可以使抽象的問題具體化,復雜的問題簡單化?!皵?shù)缺形時少直觀,形少數(shù)時難入微”,利用數(shù)形結(jié)合的思想方法可以深刻揭示數(shù)學問題的本質(zhì)。數(shù)形結(jié)合的思想方法在高考中占有非常重要的地位,考綱指出“數(shù)學科的命題,在考查基礎知識的基礎上,注重對數(shù)學思想思想方法的考查,注重對數(shù)學能力的考查”,靈活運用數(shù)形結(jié)合的思想方法,可以有效提升思維品質(zhì)和數(shù)學技能?!皩?shù)學思想方法的考查是對數(shù)學知識在更高層次的抽象和概括的考查,考查時要與數(shù)學知識相結(jié)合”,用好數(shù)形結(jié)合的思想方法,需要在平時學習時注意理解概念的幾何意義和圖形的數(shù)量表示,為用好數(shù)形結(jié)合思想打下堅實的知識基礎。函數(shù)的圖像、方程的曲線、集合的文氏圖或數(shù)軸表示等,是“以形示數(shù)”,而解析幾何的方程、斜率、距離公式,向量的坐標表示則是“以數(shù)助形”,還有導數(shù)更是數(shù)形形結(jié)合的產(chǎn)物,這些都為我們提供了“數(shù)形結(jié)合”的知識平臺。在數(shù)學學習和解題過程中,要善于運用數(shù)形結(jié)合的方法來尋求解題途徑,制定解題方案,養(yǎng)成數(shù)形結(jié)合的習慣,解題先想圖,以圖助解題。用好數(shù)形結(jié)合的方法,能起到事半功倍的效果,“數(shù)形結(jié)合千般好,數(shù)形分離萬事休”。數(shù)形結(jié)合,數(shù)形轉(zhuǎn)化常從一下幾個方面:(1)集合的運算及文氏圖(2)函數(shù)圖象,導數(shù)的幾何意義(3)解析幾何中方程的曲線(4)數(shù)形轉(zhuǎn)化,以形助數(shù)的還有:數(shù)軸、函數(shù)圖象、單位圓、三角函數(shù)線或數(shù)式的結(jié)構(gòu)特征等;取值范圍,最值問題,方程不等式解的討論,有解與恒成立問題等等,許多問題還可以通過換元轉(zhuǎn)化為具有明顯幾何意義的問題,借助圖形求解。應用一:數(shù)學文化中的數(shù)形結(jié)合一、單選題1.我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”,在數(shù)學學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征,如函數(shù)SKIPIF1<0的圖象大致形狀是(

)A. B.C. D.【答案】D【分析】首先求出函數(shù)的定義域,再判斷函數(shù)的單調(diào)性,即可得解.【詳解】解:對于函數(shù)SKIPIF1<0,則函數(shù)的定義域為SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),函數(shù)圖象關(guān)于原點對稱,故符合題意的只有D.故選:D2.華羅庚是享譽世界的數(shù)學大師,其斐然成績早為世人所推崇.他曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微”.告知我們把“數(shù)”與“形”,“式”與“圖”結(jié)合起來是解決數(shù)學問題的有效途徑.若函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的大致圖象如圖,則函數(shù)SKIPIF1<0的大致圖象是(

)A. B. C. D.【答案】C【分析】根據(jù)題意,求得SKIPIF1<0,結(jié)合指數(shù)函數(shù)的圖象與性質(zhì)以及圖象變換,即可求解.【詳解】由題意,根據(jù)函數(shù)SKIPIF1<0的圖象,可得SKIPIF1<0,根據(jù)指數(shù)函數(shù)SKIPIF1<0的圖象與性質(zhì),結(jié)合圖象變換向下移動SKIPIF1<0個單位,可得函數(shù)SKIPIF1<0的圖象只有選項C符合.故選:C.3.我國著名數(shù)學家華歲庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如函數(shù)SKIPIF1<0的圖象大致是(

)A. B.C. D.【答案】C【分析】判斷函數(shù)的奇偶性,結(jié)合函數(shù)的值的情況,即可判斷答案.【詳解】由題意知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)滿足SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),圖象關(guān)于原點對稱,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,圖象在x軸上方,故A錯誤,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,圖象在x軸下方,故SKIPIF1<0錯誤,結(jié)合函數(shù)的奇偶性可知,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,符合題意的圖象只有C中圖象,故選:C.4.我國著名數(shù)學家華羅庚曾說過:“數(shù)無形時少直觀,形無數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.函數(shù)SKIPIF1<0的部分圖像大致為(

)A. B.C. D.【答案】A【分析】根據(jù)函數(shù)的奇偶性和特殊點的函數(shù)值,即可得解.【詳解】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是奇函數(shù),其圖像關(guān)于原點對稱,排除選項B、D;對SKIPIF1<0故可排除選項C.故選:A.5.分形是由混沌方程組成,其最大的特點是自相似性:當我們拿出圖形的一部分時,它與整體的形狀完全一樣,只是大小不同.謝爾賓斯基地毯是數(shù)學家謝爾賓斯基提出的一個分形圖形,它的構(gòu)造方法是:將一個正方形均分為9個小正方形,再將中間的正方形去掉,稱為一次迭代;然后對余下的8個小正方形做同樣操作,直到無限次.如圖,進行完二次迭代后的謝爾賓斯基地毯如圖,從正方形SKIPIF1<0內(nèi)隨機取一點,該點取自陰影部分的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設大正方形的邊長為9,分別求出對應區(qū)域的面積,結(jié)合幾何概型的概率公式進行計算即可.【詳解】解:設大正方形的邊長為9,則每個小正方形的邊長為1,則大正方形的面積為SKIPIF1<0,則每個小正方形的面積為1,則所有黑色正方形的面積之和為SKIPIF1<0,則該點取自陰影部分的概率為SKIPIF1<0.故選:B.二、解答題6.設計一個印有“紅十字”logo的正方形旗幟SKIPIF1<0(如圖).要求“紅十字”logo居中,其突出邊緣之間留空寬度均為2cm,“紅十字”logo的面積(陰影部分)為SKIPIF1<0.SKIPIF1<0的長度不小于SKIPIF1<0的長度.記SKIPIF1<0,SKIPIF1<0.(1)試用SKIPIF1<0表示SKIPIF1<0,并求出SKIPIF1<0的取值范圍;(2)當SKIPIF1<0為多少時,可使正方形SKIPIF1<0的面積最???參考結(jié)論:函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù)【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)面積列出等式進行求解即可;(2)根據(jù)題意得到SKIPIF1<0面積表達式,結(jié)合(1)的結(jié)論和題中所給函數(shù)的單調(diào)性進行求解即可.【詳解】(1)由題意可知:SKIPIF1<0,因為SKIPIF1<0的長度不小于SKIPIF1<0的長度,所以SKIPIF1<0,即SKIPIF1<0;(2)設正方形SKIPIF1<0的面積為SKIPIF1<0,所以SKIPIF1<0,要想正方形SKIPIF1<0的面積最小,只需SKIPIF1<0最小,SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),因此當SKIPIF1<0時,SKIPIF1<0有最小值,即SKIPIF1<0有最小值,因此正方形SKIPIF1<0的面積最小.應用二:函數(shù)中的數(shù)形結(jié)合一、單選題1.下面圖象中,不能表示函數(shù)的是(

)A. B.C. D.【答案】C【分析】根據(jù)函數(shù)的概念結(jié)合條件分析即得.【詳解】因為由函數(shù)的概念可知,一個自變量對應唯一的一個函數(shù)值,故ABD正確;選項C中,當x=0時有兩個函數(shù)值與之對應,所以C錯誤.故選:C.2.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】C【分析】利用排除法及奇函數(shù)的性質(zhì),結(jié)合基本不等式即可求解.【詳解】由SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),排除A;當SKIPIF1<0時,SKIPIF1<0,排除D;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,(當且僅當SKIPIF1<0時等號成立)即SKIPIF1<0,排除B;所以C正確.故選:C.3.已知函數(shù)SKIPIF1<0的圖象如圖1所示,則圖2對應的函數(shù)有可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用分類討論思想,根據(jù)函數(shù)值的符號,及變化,分別對四個選項判斷即可求解.【詳解】對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤,故選:SKIPIF1<0.4.函數(shù)SKIPIF1<0的圖象大致是(

)A. B. C. D.【答案】D【分析】分析函數(shù)SKIPIF1<0的定義域與奇偶性,結(jié)合基本不等式以及排除法可得出合適的選項.【詳解】對任意的SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,又因為SKIPIF1<0,故函數(shù)SKIPIF1<0為奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立,排除ABC選項.故選:D.5.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】B【分析】由SKIPIF1<0可排除C,D,當SKIPIF1<0時,SKIPIF1<0可排除A,即可得正確答案.【詳解】由SKIPIF1<0可排除C,D;當SKIPIF1<0時,SKIPIF1<0,排除A.故選:B.6.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】C【分析】利用函數(shù)的奇偶性及冪函數(shù)的性質(zhì)進行排除可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),排除A,B選項;易知當SKIPIF1<0時,SKIPIF1<0為增函數(shù),且增加幅度較為緩和,所以D不正確.故選:C.7.已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像是(

)A. B.C. D.【答案】D【分析】由SKIPIF1<0可知SKIPIF1<0圖像與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,由SKIPIF1<0的圖像即可得出結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0圖像與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,由SKIPIF1<0解析式,作出SKIPIF1<0的圖像如圖.從而可得SKIPIF1<0圖像為D選項.故選:D.8.已知集合SKIPIF1<0,集合SKIPIF1<0,下列圖象能建立從集合A到集合B的函數(shù)關(guān)系的是(

)A. B.C. D.【答案】D【分析】存在點使一個SKIPIF1<0與兩個SKIPIF1<0對應,A錯誤;當SKIPIF1<0時,沒有與之對應的SKIPIF1<0,B錯誤;SKIPIF1<0的范圍超出了集合SKIPIF1<0的范圍,C錯誤;選項D滿足函數(shù)關(guān)系的條件,正確,得到答案.【詳解】對選項A:存在點使一個SKIPIF1<0與兩個SKIPIF1<0對應,不符合,排除;對選項B:當SKIPIF1<0時,沒有與之對應的SKIPIF1<0,不符合,排除;對選項C:SKIPIF1<0的范圍超出了集合SKIPIF1<0的范圍,不符合,排除;對選項D:滿足函數(shù)關(guān)系的條件,正確.故選:D9.函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象大致為(

)A. B.C. D.【答案】D【分析】先由函數(shù)奇偶性定義推得SKIPIF1<0為奇函數(shù),排除AB;再由SKIPIF1<0排除C,從而得解.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的定義域關(guān)于原點對稱,又SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),則SKIPIF1<0的圖像關(guān)于原點對稱,排除AB;又SKIPIF1<0,排除C;因為排除了選項ABC,而選項D的圖像滿足上述SKIPIF1<0的性質(zhì),故D正確.故選:D.二、解答題10.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0).(1)設關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0當SKIPIF1<0時,在如圖所示的坐標系中畫出函數(shù)SKIPIF1<0的圖象,并寫出SKIPIF1<0的最小值(無需過程);(2)求不等式SKIPIF1<0的解集.【答案】(1)圖象見解析,最小值為0;(2)答案見解析【分析】(1)利用描點法即可得到函數(shù)SKIPIF1<0的圖象,進而得到SKIPIF1<0的最小值;(2)按k分類討論,即可求得該一元二次不等式的解集.【詳解】(1)k=1時,SKIPIF1<0的圖象如圖所示:當x=-1時,函數(shù)SKIPIF1<0取得最小值0.(2)因為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.①當k>2時,可得SKIPIF1<0;②當k=2時,可得x=0;③當k<2時,可得SKIPIF1<0.綜上所述:當k<2時,不等式的解集為SKIPIF1<0;當k=2時,不等式的解集為SKIPIF1<0;當k>2時,不等式的解集為SKIPIF1<0.應用三:數(shù)形結(jié)合在三角函數(shù)中的應用一、單選題1.下面圖象中,不能表示函數(shù)的是(

)A. B.C. D.【答案】C【分析】根據(jù)函數(shù)的概念結(jié)合條件分析即得.【詳解】因為由函數(shù)的概念可知,一個自變量對應唯一的一個函數(shù)值,故ABD正確;選項C中,當x=0時有兩個函數(shù)值與之對應,所以C錯誤.故選:C.2.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】C【分析】利用排除法及奇函數(shù)的性質(zhì),結(jié)合基本不等式即可求解.【詳解】由SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),排除A;當SKIPIF1<0時,SKIPIF1<0,排除D;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,(當且僅當SKIPIF1<0時等號成立)即SKIPIF1<0,排除B;所以C正確.故選:C.3.已知函數(shù)SKIPIF1<0的圖象如圖1所示,則圖2對應的函數(shù)有可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用分類討論思想,根據(jù)函數(shù)值的符號,及變化,分別對四個選項判斷即可求解.【詳解】對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0錯誤,故選:SKIPIF1<0.4.函數(shù)SKIPIF1<0的圖象大致是(

)A. B. C. D.【答案】D【分析】分析函數(shù)SKIPIF1<0的定義域與奇偶性,結(jié)合基本不等式以及排除法可得出合適的選項.【詳解】對任意的SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,又因為SKIPIF1<0,故函數(shù)SKIPIF1<0為奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立,排除ABC選項.故選:D.5.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】B【分析】由SKIPIF1<0可排除C,D,當SKIPIF1<0時,SKIPIF1<0可排除A,即可得正確答案.【詳解】由SKIPIF1<0可排除C,D;當SKIPIF1<0時,SKIPIF1<0,排除A.故選:B.6.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】C【分析】利用函數(shù)的奇偶性及冪函數(shù)的性質(zhì)進行排除可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),排除A,B選項;易知當SKIPIF1<0時,SKIPIF1<0為增函數(shù),且增加幅度較為緩和,所以D不正確.故選:C.7.已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像是(

)A. B.C. D.【答案】D【分析】由SKIPIF1<0可知SKIPIF1<0圖像與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,由SKIPIF1<0的圖像即可得出結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0圖像與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,由SKIPIF1<0解析式,作出SKIPIF1<0的圖像如圖.從而可得SKIPIF1<0圖像為D選項.故選:D.8.已知集合SKIPIF1<0,集合SKIPIF1<0,下列圖象能建立從集合A到集合B的函數(shù)關(guān)系的是(

)A. B.C. D.【答案】D【分析】存在點使一個SKIPIF1<0與兩個SKIPIF1<0對應,A錯誤;當SKIPIF1<0時,沒有與之對應的SKIPIF1<0,B錯誤;SKIPIF1<0的范圍超出了集合SKIPIF1<0的范圍,C錯誤;選項D滿足函數(shù)關(guān)系的條件,正確,得到答案.【詳解】對選項A:存在點使一個SKIPIF1<0與兩個SKIPIF1<0對應,不符合,排除;對選項B:當SKIPIF1<0時,沒有與之對應的SKIPIF1<0,不符合,排除;對選項C:SKIPIF1<0的范圍超出了集合SKIPIF1<0的范圍,不符合,排除;對選項D:滿足函數(shù)關(guān)系的條件,正確.故選:D9.函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象大致為(

)A. B.C. D.【答案】D【分析】先由函數(shù)奇偶性定義推得SKIPIF1<0為奇函數(shù),排除AB;再由SKIPIF1<0排除C,從而得解.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的定義域關(guān)于原點對稱,又SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),則SKIPIF1<0的圖像關(guān)于原點對稱,排除AB;又SKIPIF1<0,排除C;因為排除了選項ABC,而選項D的圖像滿足上述SKIPIF1<0的性質(zhì),故D正確.故選:D.二、解答題10.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0).(1)設關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0當SKIPIF1<0時,在如圖所示的坐標系中畫出函數(shù)SKIPIF1<0的圖象,并寫出SKIPIF1<0的最小值(無需過程);(2)求不等式SKIPIF1<0的解集.【答案】(1)圖象見解析,最小值為0;(2)答案見解析【分析】(1)利用描點法即可得到函數(shù)SKIPIF1<0的圖象,進而得到SKIPIF1<0的最小值;(2)按k分類討論,即可求得該一元二次不等式的解集.【詳解】(1)k=1時,SKIPIF1<0的圖象如圖所示:當x=-1時,函數(shù)SKIPIF1<0取得最小值0.(2)因為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.①當k>2時,可得SKIPIF1<0;②當k=2時,可得x=0;③當k<2時,可得SKIPIF1<0.綜上所述:當k<2時,不等式的解集為SKIPIF1<0;當k=2時,不等式的解集為SKIPIF1<0;當k>2時,不等式的解集為SKIPIF1<0.應用四:數(shù)形結(jié)合在圓錐曲線中的應用一、單選題1.如圖,在圓柱SKIPIF1<0中,SKIPIF1<0為底面直徑,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是母線SKIPIF1<0的中點,SKIPIF1<0是上底面上的動點,若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則點SKIPIF1<0的軌跡長度為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】作SKIPIF1<0,由圓柱的結(jié)構(gòu)特征和線面垂直的判定可知SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0點軌跡是平面SKIPIF1<0與上底面的交線SKIPIF1<0,結(jié)合勾股定理可求得SKIPIF1<0長,即為所求軌跡長度.【詳解】連接SKIPIF1<0,作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,設平面SKIPIF1<0與上底面交于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0的軌跡為SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是母線SKIPIF1<0中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.2.中國自古就有“橋的國度”之稱,福建省寧德市保留著50多座存世幾十年甚至數(shù)百年的木拱廊橋,堪稱木拱廊橋的寶庫.如圖是某木拱廊橋的剖面圖SKIPIF1<0是拱骨,SKIPIF1<0是相等的步,相鄰的拱步之比分別為SKIPIF1<0,若SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,且直線SKIPIF1<0的斜率為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用題中關(guān)系建立等式求解即可.【詳解】由題可知SKIPIF1<0因為SKIPIF1<0所以SKIPIF1<0,又SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,所以,SKIPIF1<0故選:B二、多選題3.如圖所示,在棱長為SKIPIF1<0的正方體SKIPIF1<0中,則下列命題中正確的是(

)A.若點SKIPIF1<0在側(cè)面SKIPIF1<0所在的平面上運動,它到直線SKIPIF1<0的距離與到直線SKIPIF1<0的距離之比為2,則動點SKIPIF1<0的軌跡是圓B.若點SKIPIF1<0在側(cè)面SKIPIF1<0所在的平面上運動,它到直線SKIPIF1<0的距離與到面SKIPIF1<0的距離之比為2,則動點SKIPIF1<0的軌跡是橢圓C.若點SKIPIF1<0在側(cè)面SKIPIF1<0所在的平面上運動,它到直線SKIPIF1<0的距離與到直線SKIPIF1<0的距離相等,則動點SKIPIF1<0的軌跡是拋物線D.若點SKIPIF1<0是線段SKIPIF1<0的中點,SKIPIF1<0分別是直線SKIPIF1<0上的動點,則SKIPIF1<0的最小值是SKIPIF1<0【答案】ACD【分析】對于選項A,建立如圖所示的直角坐標系,由題得SKIPIF1<0,代入坐標化簡即得解;對于選項B,代入坐標化簡SKIPIF1<0即得解;對于選項C,代入坐標化簡SKIPIF1<0即得解;對于選項D,對任意的點SKIPIF1<0,固定點SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0最小,即SKIPIF1<0最小,把平面SKIPIF1<0翻起來,使之和平面SKIPIF1<0在同一個平面,當SKIPIF1<0時,SKIPIF1<0最小,即得解.【詳解】對于選項A,建立如圖所示的直角坐標系,則SKIPIF1<0設SKIPIF1<0因為SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以點SKIPIF1<0到直線SKIPIF1<0的距離就是SKIPIF1<0,同理點SKIPIF1<0到直線SKIPIF1<0的距離就是SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,它表示圓,所以該選項正確;對于選項B,過點SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,因為平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,則點SKIPIF1<0到平面SKIPIF1<0的距離就是SKIPIF1<0.所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以動點SKIPIF1<0的軌跡是雙曲線,所以該選項錯誤;對于選項C,點SKIPIF1<0到直線SKIPIF1<0的距離就是SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,所以動點SKIPIF1<0的軌跡是拋物線,所以該選項正確;對于選項D,對任意的點SKIPIF1<0,固定點SKIPIF1<0時,過點SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0,垂足為SKIPIF1<0,連接SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0最小,此時SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.如下圖,把平面SKIPIF1<0翻起來,使之和平面SKIPIF1<0在同一個平面,當SKIPIF1<0時,SKIPIF1<0最小,此時SKIPIF1<0.故該選項正確.故選:ACD三、填空題4.比利時數(shù)學家丹德林發(fā)現(xiàn):在圓錐內(nèi)放兩個大小不同且不相切的球,使得它們分別與圓錐的側(cè)面?底面相切,用與兩球都相切的平面截圓錐的側(cè)面得到的截面曲線是橢圓(其中兩球與截面的切點即為橢圓的焦點).如圖,圓錐的錐角為SKIPIF1<0,斜截面與圓錐軸所成角為SKIPIF1<0,則橢圓的離心率為__________.【答案】SKIPIF1<0【分析】設兩個球的半徑分別為SKIPIF1<0,已知圓錐母線與軸的夾角為SKIPIF1<0,截面與軸的夾角為SKIPIF1<0,利用已知條件和幾何關(guān)確定SKIPIF1<0的關(guān)系,結(jié)合橢圓的性質(zhì),即可得出橢圓離心率.【詳解】如圖,上面球心為SKIPIF1<0,下面的球心為SKIPIF1<0,設兩個球的半徑分別為SKIPIF1<0和SKIPIF1<0,由于圓錐的錐角為SKIPIF1<0,則球心距離SKIPIF1<0,截面分別與球SKIPIF1<0,球SKIPIF1<0相切于點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是截面橢圓的焦點),如圖,圓錐面與其內(nèi)切球SKIPIF1<0、SKIPIF1<0分別相切與SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,截面與圓錐的母線交SKIPIF1<0.由于圓錐的錐角為SKIPIF1<0,所以圓錐母線與軸的夾角為SKIPIF1<0,斜截面與圓錐軸所成角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則橢圓的長軸長SKIPIF1<0,焦距SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0則橢圓的離心率SKIPIF1<0.故答案為:SKIPIF1<0.5.圓錐曲線有著令人驚奇的光學性質(zhì),這些性質(zhì)均與它們的焦點有關(guān).如:從橢圓的一個焦點處出發(fā)的光線照射到橢圓上,經(jīng)過反射后通過橢圓的另一個焦點;從拋物線的焦點處出發(fā)的光線照射到拋物線上,經(jīng)反射后的光線平行于拋物線的軸.某次科技展覽中某展品的一個截面由拋物線的一部分SKIPIF1<0和一個“雙孔”的橢圓SKIPIF1<0構(gòu)成(小孔在橢圓的右上方).如圖,橢圓SKIPIF1<0為SKIPIF1<0的焦點,SKIPIF1<0為下頂點,SKIPIF1<0也為SKIPIF1<0的焦點,若由SKIPIF1<0發(fā)出一條光線經(jīng)過點SKIPIF1<0反射后穿過一個小孔再經(jīng)拋物線上的點SKIPIF1<0反射后平行于SKIPIF1<0軸射出,由SKIPIF1<0發(fā)出的另一條光線經(jīng)由橢圓SKIPIF1<0上的點SKIPIF1<0反射后穿過另一個小孔再經(jīng)拋物線上的點SKIPIF1<0反射后平行于SKIPIF1<0軸射出,若兩條平行光線間隔SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】首先聯(lián)立直線SKIPIF1<0與拋物線方程求得SKIPIF1<0點坐標,進而求得SKIPIF1<0點坐標,然后再聯(lián)立直線SKIPIF1<0與橢圓方程求得SKIPIF1<0點坐標,可得向量SKIPIF1<0的坐標,最后求得SKIPIF1<0.【詳解】由題意得:SKIPIF1<0可得拋物線方程SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0;因為兩條平行光線間隔SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.直線SKIPIF1<0:SKIPIF1<0,聯(lián)立橢圓方程SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0;則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題6.把底面為橢圓且母線與底面垂直的柱體稱為“橢圓柱”.如圖,橢圓柱SKIPIF1<0中底面長軸SKIPIF1<0,短軸長SKIPIF1<0,SKIPIF1<0為下底面橢圓的左右焦點,SKIPIF1<0為上底面橢圓的右焦點,SKIPIF1<0,P為SKIPIF1<0的中點,MN為過點SKIPIF1<0的下底面的一條動弦(不與AB重合).(1)求證:SKIPIF1<0平面PMN(2)求三棱錐SKIPIF1<0的體積的最大值.【答案】(1)證明見解析;(2)2【分析】(1)由線線平行證線面平行;(2)由解析法,建立平面直角坐標系SKIPIF1<0如圖所示,SKIPIF1<0,轉(zhuǎn)為求SKIPIF1<0的最大值,其中SKIPIF1<0為弦長公式結(jié)合韋達定理求得,SKIPIF1<0為SKIPIF1<0到直線MN的距離由點線距離公式求得.最后討論最值即可.【詳解】(1)由長軸SKIPIF1<0,短軸長SKIPIF1<0得焦半徑得SKIPIF1<0,∴SKIPIF1<0分別OB、SKIPIF1<0的中點,在柱體中,縱切面SKIPIF1<0為矩形,連接SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,∵P為SKIPIF1<0的中點,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平面PMN,SKIPIF1<0平面PMN,∴SKIPIF1<0平面PMN;(2)SKIPIF1<0,建立平面直角坐標系SKIPIF1<0如圖所示,則底面橢圓為SKIPIF1<0,SKIPIF1<0,由題意知,直線MN的斜率不為0,設為SKIPIF1<0,SKIPIF1<0,聯(lián)立橢圓方程可得SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.又點SKIPIF1<0到直線MN的距離SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.設SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論