版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)建模與數(shù)學(xué)實驗Matlab解微分方程實驗?zāi)康膶嶒瀮?nèi)容2、學(xué)會用Matlab求微分方程的數(shù)值解.1、學(xué)會用Matlab求簡單微分方程的解析解.1、求簡單微分方程的解析解.4、作業(yè).2、求微分方程的數(shù)值解.3、數(shù)學(xué)建模實例
微分方程的解析解求微分方程(組)的解析解命令:dsolve(‘方程1’,‘方程2’,…‘方程n’,‘初始條件’,‘自變量’)Toff1.m結(jié)果:u=tan(t+c1)解輸入命令:y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')結(jié)果為:y=3e-2xsin(5x)ToMatlab(ff2)解輸入命令:
[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z','t');結(jié)果為:x=(c1-c2+c3+c2e-3t-c3e-3t)e2t
y=-c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2tz=(-c1e-4t+c2e-4t+c1-c2+c3)e2t
ToMatlab(ff3)返回注意:某些方程的解析解如果不存在則只能求數(shù)值解練習(xí)微分方程的數(shù)值解(一)常微分方程數(shù)值解的定義
在生產(chǎn)和科研中所處理的微分方程往往很復(fù)雜且大多得不出一般解。而在實際上對初值問題,一般是要求得到解在若干個點上滿足規(guī)定精確度的近似值,或者得到一個滿足精確度要求的便于計算的表達(dá)式。因此,研究常微分方程的數(shù)值解法是十分必要的。返回(二)建立數(shù)值解法的一些途徑1、用差商代替導(dǎo)數(shù)
若步長h較小,則有故有公式:此即歐拉法。2、使用數(shù)值積分對方程y’=f(x,y),兩邊由xi到xi+1積分,并利用梯形公式,有:實際應(yīng)用時,與歐拉公式結(jié)合使用:此即改進(jìn)的歐拉法。故有公式:3、使用泰勒公式
以此方法為基礎(chǔ),有龍格-庫塔法、線性多步法等方法。4、數(shù)值公式的精度當(dāng)一個數(shù)值公式的截斷誤差可表示為O(hk+1)時(k為正整數(shù),h為步長),稱它是一個k階公式。k越大,則數(shù)值公式的精度越高。歐拉法是一階公式,改進(jìn)的歐拉法是二階公式。龍格-庫塔法有二階公式和四階公式。線性多步法有四階阿達(dá)姆斯外插公式和內(nèi)插公式。返回(三)用Matlab軟件求常微分方程的數(shù)值解[t,x]=solver(’f’,ts,x0,options)ode45ode23ode113ode15sode23s由待解方程寫成的m-文件名ts=[t0,tf],t0、tf為自變量的初值和終值函數(shù)的初值ode23:組合的2/3階龍格-庫塔-芬爾格算法ode45:運(yùn)用組合的4/5階龍格-庫塔-芬爾格算法自變量值函數(shù)值用于設(shè)定誤差限(缺省時設(shè)定相對誤差10-3,絕對誤差10-6),命令為:options=odeset(’reltol’,rt,’abstol’,at),rt,at:分別為設(shè)定的相對誤差和絕對誤差.1、在解n個未知函數(shù)的方程組時,x0和x均為n維向量,m-文件中的待解方程組應(yīng)以x的分量形式寫成.2、使用Matlab軟件求數(shù)值解時,高階微分方程必須等價地變換成一階微分方程組.注意:例:x+(x2-1)x+x=0為方便令x1=x,x2=x分別對x1,x2求一階導(dǎo)數(shù),整理后寫成一階微分方程組形式
x1=x2x2=x2(1-x12)-x1建立m文件解微分方程······建立m文件functionxdot=wf(t,x)xdot=zeros(2,1)xdot(1)=x(2)xdot(2)=x(2)*(1-x(1)^2)-x(1)給定區(qū)間、初始值;求解微分方程t0=0;tf=20;x0=[00.25]';[t,x]=ode23(‘wf’,t0,tf,x0);plot(t,x),figure(2),plot(x(:,1),x(:,2))命令格式:[T,Y]=ODE23(ODEFUN,TSPAN,Y0)建立m文件functiondxdt=wf(t,x)dxdt=[x(2);x(2)*(1-x(1)^2)-x(1)];求解微分方程[t,x]=ode23(@wf,[030],[00.25]);plot(t,x);figure(2)plot(x(:,1),x(:,2))解:令y1=x,y2=y1’1、建立m-文件vdp1000.m如下:
functiondy=vdp1000(t,y)
dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)^2)*y(2)-y(1);
2、取t0=0,tf=3000,輸入命令:
[T,Y]=ode15s('vdp1000',[03000],[20]);plot(T,Y(:,1),'-')3、結(jié)果如圖ToMatlab(ff4)解
1、建立m-文件rigid.m如下:
functiondy=rigid(t,y)
dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);dy(3)=-0.51*y(1)*y(2);2、取t0=0,tf=12,輸入命令:
[T,Y]=ode45('rigid',[012],[011]);plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、結(jié)果如圖ToMatlab(ff5)圖中,y1的圖形為實線,y2的圖形為“*”線,y3的圖形為“+”線.返回導(dǎo)彈追蹤問題設(shè)位于坐標(biāo)原點的甲艦向位于x軸上點A(1,0)處的乙艦發(fā)射導(dǎo)彈,導(dǎo)彈頭始終對準(zhǔn)乙艦.如果乙艦以最大的速度v0(是常數(shù))沿平行于y軸的直線行駛,導(dǎo)彈的速度是5v0,求導(dǎo)彈運(yùn)行的曲線方程.又乙艦行駛多遠(yuǎn)時,導(dǎo)彈將它擊中?解法一(解析法)由(1),(2)消去t整理得模型:ToMatlab(chase1)軌跡圖見程序chase1解法二(數(shù)值解)1.建立m-文件eq1.m
functiondy=eq1(x,y)
dy=zeros(2,1);dy(1)=y(2);dy(2)=1/5*sqrt(1+y(1)^2)/(1-x);2.取x0=0,xf=0.9999,建立主程序ff6.m如下:
x0=0;xf=0.99999;[x,y]=ode23('eq1',[x0xf],[00]);Y=0:0.01:2;plot(1,Y,'g.');holdon;plot(x,y(:,1),'b*');
結(jié)論:導(dǎo)彈大致在(1,0.2)處擊中乙艦ToMatlab(ff6)令y1=y,y2=y1’,將方程(3)化為一階微分方程組。解法三(建立參數(shù)方程求數(shù)值解)設(shè)時刻t乙艦的坐標(biāo)為(X(t),Y(t)),導(dǎo)彈的坐標(biāo)為(x(t),y(t)).3.因乙艦以速度v0沿直線x=1運(yùn)動,設(shè)v0=1,則w=5,X=1,Y=t4.解導(dǎo)彈運(yùn)動軌跡的參數(shù)方程建立m-文件eq2.m如下:
functiondy=eq2(t,y)
dy=zeros(2,1);dy(1)=5*(1-y(1))/sqrt((1-y(1))^2+(t-y(2))^2);dy(2)=5*(t-y(2))/sqrt((1-y(1))^2+(t-y(2))^2);取t0=0,tf=2,建立主程序chase2.m如下:
[t,y]=ode45('eq2',[02],[00]);Y=0:0.01:2;plot(1,Y,'-'),holdonplot(y(:,1),y(:,2),'*')ToMatlab(chase2)5.結(jié)果見圖1導(dǎo)彈大致在(1,0.2)處擊中乙艦,與前面的結(jié)論一致.圖1圖2返回在chase2.m中,按二分法逐步修改tf,即分別取tf=1,0.5,0.25,…,直到tf=0.21時,得圖2.結(jié)論:時刻t=0.21時,導(dǎo)彈在(1,0.21)處擊中乙艦。ToMatlab(chase2)慢跑者與狗一個慢跑者在平面上沿橢圓以恒定的速率v=1跑步,設(shè)橢圓方程為:x=10+20cost,y=20+5sint.突然有一只狗攻擊他.這只狗從原點出發(fā),以恒定速率w跑向慢跑者,狗的運(yùn)動方向始終指向慢跑者.分別求出w=20,w=5時狗的運(yùn)動軌跡.1.模型建立設(shè)時刻t慢跑者的坐標(biāo)為(X(t),Y(t)),狗的坐標(biāo)為(x(t),y(t)).則X=10+20cost,Y=20+15sint,狗從(0,0)出發(fā),與導(dǎo)彈追蹤問題類似,建立狗的運(yùn)動軌跡的參數(shù)方程:2.模型求解(1)w=20時,建立m-文件eq3.m如下:functiondy=eq3(t,y)
dy=zeros(2,1);dy(1)=20*(10+20*cos(t)-y(1))/sqrt((10+20*cos(t)-y(1))^2+(20+15*sin(t)-y(2))^2);dy(2)=20*(20+15*sin(t)-y(2))/sqrt((10+20*cos(t)-y(1))^2+(20+15*sin(t)-y(2))^2);取t0=0,tf=10,建立主程序chase3.m如下:
t0=0;tf=10;[t,y]=ode45('eq3',[t0tf],[00]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,'-')holdonplot(y(:,1),y(:,2),'*')在chase3.m,不斷修改tf的值,分別取tf=5,2.5,3.5,…,至3.15時,狗剛好追上慢跑者.ToMatlab(chase3)建立m-文件eq4.m如下:functiondy=eq4(t,y)
dy=zeros(2,1);dy(1)=5*(10+20*cos(t)-y(1))/sqrt((10+20*cos(t)-y(1))^2+(20+15*sin(t)-y(2))^2);dy(2)=5*(20+15*sin(t)-y(2))/sqrt((10+20*cos(t)-y(1))^2+(20+15*sin(t)-y(2))^2);取t0=0,tf=10,建立主程序chase4.m如下:
t0=0;tf=10;[t,y]=ode45('eq4',[t0tf],[00]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,'-')holdonplot(y(:,1),y(:,2),'*')在chase3.m,不斷修改tf的值,分別取tf=20,40,80,…,可以看出,狗永遠(yuǎn)追不上慢跑者.ToMatlab(chase4)(2)w=5時返回地中海鯊魚問題意大利生物學(xué)家Ancona曾致力于魚類種群相互制約關(guān)系的研究,他從第一次世界大戰(zhàn)期間,地中海各港口捕獲的幾種魚類捕獲量百分比的資料中,發(fā)現(xiàn)鯊魚等的比例有明顯增加(見下表),而供其捕食的食用魚的百分比卻明顯下降.顯然戰(zhàn)爭使捕魚量下降,食用魚增加,鯊魚等也隨之增加,但為何鯊魚的比例大幅增加呢?他無法解釋這個現(xiàn)象,于是求助于著名的意大利數(shù)學(xué)家V.Volterra,希望建立一個食餌—捕食系統(tǒng)的數(shù)學(xué)模型,定量地回答這個問題.
該模型反映了在沒有人工捕獲的自然環(huán)境中食餌與捕食者之間的制約關(guān)系,沒有考慮食餌和捕食者自身的阻滯作用,是Volterra提出的最簡單的模型.首先,建立m-文件shier.m如下:
function
dx=shie
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海市建筑安全員考試題庫及答案
- 2025年河南省建筑安全員考試題庫附答案
- 貴陽信息科技學(xué)院《薪酬與福利》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《食品試驗設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《物理污染控制工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025云南省建筑安全員C證考試題庫
- 廣州新華學(xué)院《音樂劇演唱(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《園藝生物技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年黑龍江建筑安全員《A證》考試題庫及答案
- 2025年湖南省建筑安全員《B證》考試題庫及答案
- 2023年鞍山市海城市教育局畢業(yè)生招聘筆試真題
- 北京2025年首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院招聘140人歷年參考題庫(頻考版)含答案解析
- 遼寧省撫順縣2024-2025學(xué)年九年級上學(xué)期期末物理試卷(含答案)
- 2024-2025學(xué)年安徽省合肥市巢湖市三年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 浙江省寧波市九校2023-2024學(xué)年高一上期末聯(lián)考生物試題
- 《工商管理專業(yè)畢業(yè)實習(xí)》課程教學(xué)大綱
- 乳腺中心建設(shè)方案
- 國開電大本科《西方經(jīng)濟(jì)學(xué)(本)》網(wǎng)上形考(作業(yè)一至六)試題及答案
- 提高有風(fēng)險患者預(yù)防跌倒墜床護(hù)理措施落實率品管圈PDCA案例匯報
- 安環(huán)部2025年度工作計劃
- 2024年行政執(zhí)法人員執(zhí)法資格知識考試題庫(附含答案)
評論
0/150
提交評論