




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
11.Signals
Signals:physicalphenomenaorphysicalquantities,whichchangewithtimeorspace.Functionsofoneormoreindependentvariables.example:x(t)
1)DefinitionandMathematicalRepresentationofSignals(信號的定義及其數(shù)學(xué)表示)AsimpleRCcircuit:2Aspeechsignal“Shouldwechase”這句話的聲壓隨時間變化的波形3Apicture一幅黑白照片可用亮度隨二維空間變化的函數(shù)來表示42)ClassificationofSignals(信號的分類)(1)
DeterminateandRandomSignalsAdeterminatesignal——x(t)能夠用確定的時間函數(shù)表示。Arandomsignal——cannotfindafunctiontorepresentit不能用確定時間函數(shù)表示——干擾信號、噪聲信號
5(2)
Continuous-timeandDiscrete-timeSignalscontinuous-timesignals’independentvariableiscontinuous:x(t)
對一切時間t(除有限個不連續(xù)點(diǎn)外)都有確定的函數(shù)值,這類信號就稱為連續(xù)時間信號,簡稱連續(xù)信號。discrete-timesignalsaredefinedonlyatdiscretetimes(onlyforintegervaluesoftheindependentvariable):x[n]
僅在不連續(xù)的瞬間(僅在自變量的整數(shù)值上)有確定函數(shù)值
6RepresentingSignalsGraphically
0x(t)
tGraphicalrepresentationsof(a)continuous-timeand(b)discrete-timesignals(a)-2x[-1]x[0]x[4]-4-3-1012345x[n]
n(b)7(3)PeriodicandAperiodicSignals在較長時間內(nèi)(嚴(yán)格地說,無始無終)每隔一定時間T(或整數(shù)N)按相同規(guī)律重復(fù)變化的信號叫周期信號。
Foracontinuous-timesignalx(t)
x(t)=x(t+mT),(m=0,+1,-1,+2,-2,……)
forallvaluesoft.
Foradiscrete-timesignalx[n]
x[n]=x[n+mN],(m=0,+1,-1,+2,-2,……)
forallvaluesofn.Inthiscase,wesaythatx(t)(x[n])isperiodicwithFundamentalPeriodT(N).
8Examplesofperiodicsignals:sin,cosetc.withtheirfundamentalperiodN0=39Example1.1Determinethefundamentalperiodofthesignalx(t)=2cos(10πt+1)-sin(4πt-1).Fromtrigonometry,weknowthatthefundamentalperiodofcos(10πt+1)isT1=1/5,andsin(4πt-1)isT2=1/2.Whataboutthefundamentalperiodofx(t)?TheanswerisifthereisarationalT,anditisthelowestcommonmultipleofT1andT2,thenwesaythatx(t)isperiodicwithfundamentalperiodT,orelse,x(t)isaperiodic.Forthex(t)inthisexample,thelowestcommonmultipleof0.2and0.5isunit1,anditisrational,sothatthefundamentalperiodofx(t)is1.10
(4)EnergyandPowerSignals
TheinstantaneouspowerisThetotalenergyisTheaveragepoweris11SignalEnergyandPower
A.Continuous-TimeSignalInstantaneousPower:Energyovert1
t
t2:TotalEnergy:AveragePower:12B.Discrete-TimeSignalInstantaneousPower:Energyovern1
n
n2:TotalEnergy:AveragePower:13Withthesedefinitions,wecanidentifythreeimportantclassesofsignals:
A.
FiniteEnergySignal:(P
0)Example:14B.
FinitePowerSignal:(E)Example:C.SignalswithneitherfinitetotalenergynorfiniteaveragepowerExample:15
3)TransformationsoftheIndependentVariableofSignals(信號的自變量的變換)(1)TimeShiftRightshift:x(t-t0)
x[n-n0](Delay)Leftshift:x(t+t0)
x[n+n0](Advance)當(dāng)信號經(jīng)不同路徑傳輸時,所用時間不同,從而產(chǎn)生時移。如電視圖像出現(xiàn)的重影是由于信號傳輸?shù)臅r移造成。16TimeShift(Example)SignalTransformation17SignalTransformation(2)TimeReversalx(-t)
orx[-n]:Reflectionofx(t)orx[n]18SignalTransformation(3)TimeScalingx(at)orx[an]
(a>0)Stretchifa<1Compressedifa>1Example1.2Givenasignalx(-t/3+2),showninFig.(a),drawthegraphofx(t).如錄像帶慢放時,信號被展寬;快放時,信號被壓縮;倒放時,則信號被反褶。190
12t(a)x(-t/3+2)1
-2/3-1/301x(t+2)x(t/3+2)
1
-2-1004/35/321x(t)201x(-t/3)-6-5-401x(t/3)045604/35/321x(t)0
12t(a)x(-t/3+2)1214)
EvenandOddSignals(偶信號與奇信號)Evensignal:x(-t)=x(t)orx[-n]=x[n]Oddsignal:x(-t)=-x(t)orx[-n]=-x[n]Even-OddDecomposition:or:x(t)=Ev{x(t)}+Od{x(t)}
evenpartofx(t)
oddpartofx(t)22Examples:235)SeveralBasicSignals(幾種基本信號)
(1)Continuous-timeComplexExponentialandSinusoidalSignalsA.RealExponentialSignals
x(t)=Ceat(C,aarerealvalue)a>0a<024B.PeriodicComplexExponentialandSinusoidalSignals
(a)x(t)=ej
0t
(b)x(t)=Acos(
0t+
)
All
x(t)satisfyforx(t)=x(t+T),andT=2/
0,sox(t)isperiodic.Euler’sRelation(歐拉關(guān)系):
ej
0t=
cos0t+jsin0t
andcos0t=(ej
0t+
e-j
0t)/2
sin0t=(ej
0t-
e-j
0t)/2j
Wealsohave25C.GeneralComplexExponentialSignals
x(t)=Ceat,inwhichC=|C|ej
,a=r+j
0,so
Forr=0,therealandimaginarypartsofx(t)aresinusoidal;Forr>0(r<0),theycorrespondtosinusoidalsignalsmultipliedbyagrowing(decaying)exponetial.26Thedashedcurveistheenvelope(包絡(luò))fortheoscillatorcurve.
(a)Growingsinusoidalsignal,,r>0;(b)decayingsinusoid,,r<0.27(2)Discrete-timeComplexExponentialandSinusoidalSignals(sequences)A.RealExponentialSignalsRealExponentialSignal
x[n]=C
n
(a)
>1(b)0<<1(c)-1<<0(d)<-128B.SinusoidalSignalsComplexexponential:x[n]=ej
0n
=cos
0n+
jsin
0n
Sinusoidalsignal:
x[n]=cos(
0n+
)
29C.GeneralComplexExponentialSignalsComplexExponentialSignal:
x[n]=C
n
inwhichC=|C|ej
,
=|
|ej
0(polarform,極坐標(biāo)),then
x[n]=|C||
|ncos(
0n+
)+j|C||
|nsin(
0n+
)30
(a)Growingsinusoidalsequence(b)Decayingsinusoidalsequence31(3)PeriodicityPropertiesofDiscrete-timeComplexExponentialsSampling:
Discrete-timesignalshavethreemajordifferencesfromitscontinuous-timepartner.Aretheythesame?No!
Forej
0t
,ithastwoproperties:Thelargerthemagnitudeof
0,thehigheristherateofoscillationinthesignal;ej
0tisperiodicforanyvalueof
0.32A.Fordiscrete-timecomplexexponentialsignals,weneedtoconsiderafrequencyintervalof2.(在考慮離散時間復(fù)指數(shù)時,僅需要在某一個2間隔內(nèi)選擇即可)
Thus,ej0nandej(0+
2)narethesamesignals.ej0n不具備隨
0在數(shù)值上的增加而不斷增加其振蕩速率的特性!當(dāng)
0從0開始增加,其振蕩速率愈來愈快,直到
0=
,達(dá)到最大,若繼續(xù)增加
0
,其振蕩速率就下降,直到
0=2
時,又得到與
0=0時同樣的效果(常數(shù)序列).33Lowestoscillationrate:Highestoscillationrate:34Continuous-time:ej
0t
,
T=2/
0Discrete-time:ej
0n
,N=?Calculateperiod:Bydefinition:ej
0n
=
ej
0(n+N)
thusej
0N
=1
or
0N=
2mSoN=
2m/
0
withintergerNConditionofperiodicity:2/0
isrational.B.Periodicityofej
0n
若2/0為一有理數(shù),ej
0n就是周期的,否則就不是周期的.35C.FinitenumberofdistinctharmonicsForaperiodicsignalwithfundamentalperiodofN,ThereareonlyNdistinctperiodicexponentialsfordiscrete-timesignals.IntheContinuous-timecase,alloftheharmonicallyrelatedcomplexexponentialsaredistinct.36UnitSample(Impulse):UnitStepFunction:(4)TheDiscrete-TimeUnitImpulseandUnitStepSequences37Relationshipbetweenunitsampleandunitstepsequencetheunitsampleisthefirstdifferenceoftheunitstepsequencetheunitstepsequenceistherunningsumoftheunitsampleorhere38writeanydiscrete-timesignalintermsofdelayedunitsampleasSamplingPropertyofUnitSample39
UnitStepFunction:UnitImpulseFunction:(5)TheContinuous-TimeUnitStepandUnitImpulseFunctions40RelationBetweenUnitImpulseandUnitStep41Illustrationsofδ(t)
0ΔuΔ(t)t1
Continuousapproximationtotheunitstep,uΔ(t)
0Δ
1/Δ
δΔ(t)
DerivativeofuΔ(t)δ(t)isthelimitofδΔ(t)asΔ→0.42propertiesof
δ(t)Samplingpropertyδ(t)
isaevenfunction:
Scalingproperty:δ(-t)=δ(t)
Why:43Example1.3Determineandsketchthefirstderivativeofthesignaldepictedinthefollowingfigure.-1x(t)t01241-1-21012444(1)Definition:
Interconnection(互聯(lián))ofComponent,device,subsystem….(Broadestsense廣義)Aprocessinwhichsignalscanbetransformed.(Narrowsense狹義)Continuous-timesystem:bothinputsignalsandoutputsignalsarecontinuous-timesignalsDiscrete-timesystem:transformdiscrete-timeinputsintodiscrete-timeoutputs2.systems1)Continuous-TimeandDiscrete-TimeSystems45(2)RepresentationofSystemPictorialRepresentationContinuous-timesystem
x(t)y(t)Discrete-timesystem
x[n]Y[n]Relationbythenotation
46(3)SimpleExampleofsystemsExample1.8:RCCircuitinFigure1.1:Vc(t)
Vs(t)RCCircuit(System)
vs(t)vc(t)---LinearConstantCoefficientDifferentialEquation(微分方程)47BalanceinBank(System)
x[n]y[n]Example1.10:Balance(余額)inabankaccountfrommonthtomonth:balance(第n個月末的余額)---y[n]netdeposit(第n個月的凈存款)---x[n]interest(利息)---1%soy[n]=y[n-1]+1%
y[n-1]+x[n]ory[n]-1.01y[n-1]=x[n]482)InterconnectionsofSystem(1)Series(cascade)interconnection(串聯(lián)或級聯(lián))(2)Parallelinterconnection(并聯(lián))49Series-Parallelinterconnection(3)Feedbackinterconnection(反饋聯(lián)結(jié))50ExampleofFeedbackinterconnection513)
Basicpropertiesofsystems(Classifications)
(1)SystemswithandwithoutMemoryMemorylesssystem(無記憶系統(tǒng)):Itsoutputisdependentonlyontheinputatthesametime.Features:Nocapacitor,noconductor,nodelayer.Examplesofmemorylesssystem:
y(t)=C
x(t)ory[n]=C
x[n]Examplesofmemorysystem:ory[n]-0.5y[n-1]=2x[n]52(2)InvertibilityandInverseSystemsDefinition:
Asystemissaidtobeinvertible
ifdistinctinputsleadtodistinctoutputs.
Ifsystemisinvertable(可逆),thenaninversesystemexists.Aninversesystemcascaded(級聯(lián))withtheoriginalsystem,yieldsanoutputequaltotheinput.5354(3)Causality(因果性)Definition:AsystemiscausalIftheoutputatanytimedependsonlyonvaluesoftheinputatthepresenttimeandinthepast.Forcausalsystem,ifx(t)=0fort<t0,theremustbey(t)=0fort<t0.(nonanticipative(不可預(yù)測的))Memorylesssystemsarecausal.x(t)y(t)t1t255(4)Stability(穩(wěn)定性)Definition:
Iftheinputtoastablesystemisbounded(i.e.,ifitsmagnitudedoesnotgrowwithoutbound),thentheoutputmustalsobebounded.Finiteinputleadtofiniteoutput:if|x(t)|<M,then|y(t)|<N.Examples:Stablependulum Motionofautomobile56x(t)y(t)x(t-t0)y(t-t0)(5)TimeInvariance(時不變性)Definition:
Asystemistimeinvariantifthebehaviorandcharacteristicsofthesystemarefixedovertime.Timeinvariantsystem:Continuous-time:Ifx(t)y(t),thenx(t-t0)
y(t-t0).Discrete-time:Ifx(n)y(n),thenx(n-n0)
y(n-n0).57(6)Linearity(線性)
Definition:Thesystempossessestheimportantpropertyofsuperposition:A.Additivityproperty:Theresponsetox1(t)+x2(t)isy1(t)+y2(t).B.Scalingorhomogeneityproperty:Theresponsetoax1(t)isay1(t).(whereaisanycomplexconstant,a0.)Continuous-time:Discrete-time:58Lx1(t)x2(t)y1(t)y2(t)ax1(t)x1(t)+x2(t)ax1(t)+bx2(t)ay1(t)y1(t)+y2(t)ay1(t)+by2(t)Representedinblock-diagram:594)LTISystem
(線性時不變系統(tǒng))
LTIx(t)y(t)x(t-t0)ax(t)+bx(t-t0)y(t-t0)ay(t)+by(t-t0)LinearandTime-invariantsystemContinuous-time:Ifx1(t)y1(t),x2(t)y2(t),thenDiscrete-time:Ifx1(n)y1(n),x2(n)y2(n),then60Examples:1(Example1.12).Checkingthecausalityoftwosystems.ThefirstsystemisdefinedbyThesystemisnotcausal.
ThesecondsystemisdefinedbyCausal!
Itisimportanttodistinguishcarefullytheeffectsoftheinputfromthoseofanyotherfunctionsusedinthedefinitionofthesystem.2(
Example1.13).Checkthestabilityofthefollowingtwosystems3(Example1.15).Considerthetimeinvariancepropertyofthediscrete-timesystem61However,4.Considerasystemwhoseinputx[n]andoutputy[n]arerelatedbyThus,thesystemistime-varying.Todeterminewhetherornotthissystemislinear.Letx3[n]bealinearcombinationofx1[n]andx2[n]:Thus,thesystemisnonlinear.62SUMMARY1.Theconceptsofsignalsandsystems;2.Thegraphicalandmathematicalrepresentationsofsignals;3.Theclassificationsofsignals;4.Transformationsoftheindependentvariableofsignals;5.Theperiodicityofsignals;6.Severalbasicsignals;7.Interconnectionofsystems;8.Blockdiagramofsystems;9.Propertiesofsystems.63INTRODUCTION
LTIsystemspossessesthesuperpositionproperty.Representsignalsaslinearcombinationsofdelayedimpulses.Convolutionsumorconvolutionintegral.linearconstant-coefficientdifferenceordifferentialequations.641.Discrete-TimeLTI:ConvolutionSum1)TheRepresentationofDiscrete-timeSignalsinTermsofImpulses(Ch.2.1.1)2)TheDiscrete-timeUnitImpulseResponseofLTISystems(Ch.2.1.2)3)TheDiscrete-timeResponseofLTISystemstoanyInputSignal:ConvolutionSum651)TheRepresentationofDiscrete-timeSignalsinTermsofImpulsesIfx[n]=u[n],thenSiftingPropertyofUnitSample:1.Discrete-TimeLTI:ConvolutionSum662)TheDiscrete-timeUnitImpulseResponseofLTISystemsLTIx[n]=[n]y[n]=h[n]
UnitImpulseResponseh[n]:responseoftheLTIsystemtotheunitsampleδ[n].δ[n]→h[n]Whydoweneedit?673)TheDiscrete-timeResponseofLTISystemstoanyInputSignal:ConvolutionSumLTIx[n]y[n]=?Solution:Question:[n]h[n][n-k]h[n-k]x[k][n-k]x[k]h[n-k]Theresponsey[n]tox[n]istheweightedlinearcombinationofdelayedunitsampleresponses.68ConvolutionSumSoRepresentingtheconvolutionoperationsymbolicallyas:y[n]=x[n]*h[n]---ConvolutionSum
Thatis,theunitimpulseresponse--h[n]
canfullycharacterizeanLTIsystem.SummaryoncalculatingconvolutionsumTimeInversal: h[k]h[-k]TimeShift: h[-k]h[n-k]Multiplication: x[k]h[n-k]Summing:69Example2.1
ConsideraLTIsystemwithunitsampleresponseh[n]andinputx[n],asillustratedinFigure(a).Calculatetheconvolutionsum(convolution)ofthesetwosequencesgraphically.
nx[n]
012nh[n]-202(a)
122kx[k]
012kh[-k]-202
(b)22170kx[k]
0122kh[-k]-20221n=0kh[-1-k]-3-20121n=-1kh[1-k]-1012321n=171Example2.2
Consideraninputx[n]andaunitsampleresponseh[n]givenbyDetermineandplottheoutputUsingthegeometricalsumformulatoevaluatelastequation,wehave
72n……21y[n]732.Continuous-TimeLTI:ConvolutionIntegral1)TheRepresentationofContinuous-timeSignalsinTermsofImpulses(Ch.2.2.1)2)TheContinuous-timeUnitImpulseResponseofLTISystems(Ch.2.2.2)3)TheContinuous-timeResponseofLTISystemstoanyInputSignal:ConvolutionIntegral741)TheRepresentationofContinuous-timeSignalsinTermsofImpulsesDiscrete-time:Continuous-time:Why?t┉┉-Δ0Δ2ΔkΔ
┉x(t)Staircaseapproximationtoacontinuous-timesignalx(t)2.Continuous-TimeLTI:ConvolutionIntegral75Therefore:Whatisthis?DefineWehavetheexpression:as,thesummingapproachesanintegralandistheunitimpulsefunction
762)TheContinuous-timeUnitImpulseResponseofLTISystemsLTIx(t)=(t)y(t)=h(t)UnitImpulseResponseh(t)
:
theresponseoftheLTIsystemtotheinput.
3)TheContinuous-timeResponseofLTISystemstoanyInputSignal:ConvolutionIntegralLTIx(t)y(t)=?77Givetheastheresponseofacontinuous-timeLTIsystemtotheinput,thentheresponseofthesystemtopulseis
Thus,theresponse
toisAs,inaddition,thesummingbecomesanintegral.Therefore,---ConvolutionIntegral
78Representconvolutionintegraloftwosignalsx(t)andh(t)symbolicallyas:ConvolutionIntegralAcontinuous-timeLTIsystemiscompletelycharacterizedbyitsunitimpulseresponseh(t).ComputationofConvolutionIntegral:
TimeInversal:h()h(-)TimeShift:h(-)h(t-)Multiplication:x()h(t-)Integrating:79Example2.3
Considertheconvolutionofthefollowingtwosignals,whicharedepictedin(a):
2x(t)1h(t)
012t
0123t-1(a)
x(τ)h(-τ)-20123τ
t=0
x(τ)h(t-τ)-20123τt0<t<1Whent<1:x(τ)h(t-τ)=0So
80
x(τ)h(t-τ)-201t23τ1<t<2
x(τ)h(t-τ)-2012t3τ2<t<3
x(τ)h(t-τ)-20123t4τ3<t<481
x(τ)h(t-τ)-201234t5τ4<t<5
y(t)
0135τ-2
x(τ)
h(t-τ)-2012345tτ
t≥5Whent≥5:x(τ)h(t-τ)=0So
823.PropertiesofLTISystems1)TheCommutativeProperty(Ch.2.3.1)2)TheDistributiveProperty(Ch.2.3.2)3)TheAssociativeProperty(Ch.2.3.3)4)LTISystemwithandwithoutMemory(Ch.2.3.4)5)InvertibilityofLTIsystem(Ch.2.3.5)6)CausalityforLTIsystem(Ch.2.3.6)7)StabilityforLTIsystem(Ch.2.3.7)8)TheUnitStepResponseofLTIsystem(Ch.2.3.8)83h(t)orh[n]completelycharacterizesanLTIsystemWhatpropertyshouldh(t)orh[n]havefortheLTIsystemtobestable,causal,memorylessandinvertible?3.PropertiesofLTISystems841)TheCommutativePropertyDiscretetime:
x[n]*h[n]=h[n]*x[n]Continuoustime:x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)
2)TheDistributivePropertyDiscretetime:x[n]*{h1[n]+h2[n]}=x[n]*h1[n]+x[n]*h2[n]Continuoustime:
x(t)*{h1(t)+h2(t)}=x(t)*h1(t)+x(t)*h2(t)3.PropertiesofLTISystems85h1(t)+h2(t)x(t)y(t)=x(t)*{h1(t)+h2(t)}h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)
3)TheAssociativePropertyDiscretetime:
x[n]*{h1[n]*h2[n]}={x[n]*h1[n]}*h2[n]Continuoustime:
x(t)*{h1(t)*h2(t)}={x(t)*h1(t)}*h2(t)86h1(t)*h2(t)x(t)y(t)=x(t)*{h1(t)*h2(t)}h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)4)LTISystemwithandwithoutMemoryMemorylesssystem:Discretetime:y[n]=kx[n],h[n]=?Continuoustime:y(t)=kx(t),h(t)=?k
(t)
x(t)y(t)=kx(t)=x(t)*k(t)k
[n]
x[n]y[n]=kx[n]=x[n]*k[n]875)InvertibilityofLTIsystemOriginalsystem:h(t)Reversesystem:h1(t)(t)
x(t)x(t)*(t)=x(t)So,fortheinvertiblesystem:
h(t)*h1(t)=(t)orh[n]*h1[n]=[n]h(t)
x(t)x(t)h1(t)
6)CausalityforLTIsystemDiscretetimesystemsatisfy:
h[n]=0forn<0Continuoustimesystemsatisfy:
h(t)=0fort<0Why?887)StabilityforLTIsystemDefinitionofstability:Everyboundedinputproducesaboundedoutput.If|x[n]|<B,thesufficientandnecessaryconditionfor|y[n]|<AisDiscretetimesystem:Continuoustimesystem:If|x(t)|<B,theconditionfor|y(t)|<Ais898)TheUnitStepResponseofLTIsystemTheunitstepresponse,s[n]ors(t),istheoutputofanLTIsystemwheninputx[n]=u[n]orx(t)=u(t).A.Thestepresponseofadiscrete-timeLTIsystemistherunningsumofitssampleresponse:B.Theimpulseresponseofadiscrete-timeLTIsystemisthefirstdifferenceofitsstepresponse:h[n]/h(t)
[n]/(t)h[n]/h(t)u[n]/u(t)s[n]=u[n]*h[n]/s(t)=u(t)*h(t)90C.Theunitstepresponseofacontinuous-timeLTIsystemistherunningintegralofitsimpulseresponse:D.Theunitimpulseresponseofacontinuous-timeLTIsystemisthefirstderivativeoftheunitstepresponse:E.Propertiesofconvolutionintegral:Derivativeproperty:Integralproperty:Combiningthetwoproperties,wehave914.CausalLTISystemsdescribedbyDifferentialandDifferenceEquations1)Continuous-timesystem:DifferentialEquation(Ch.2.4.1)2)Discrete-timesystem:DifferenceEquation(Ch.2.4.2)3)BlockDiagramRepresentations(Ch.2.4.3)92:inputsignal;
:outputsignal.
Ci(t)VsR+–1)Continuous-timesystem:DifferentialEquationLinearconstant-coefficientdifferentialequationLinearconstant-coefficientdifferential(difference)equation
providesanimplicit
relationshipbetweentheinputandoutputratherthananexplicitexpressionforthesystemoutputasafunctionoftheinput.4.CausalLTISystemsdescribedbyDifferentialandDifferenceEquations93Howtofindthesystemoutputgivenaninputsignal?naturalresponse
Forcedresponse
Wemustspecifyoneormoreauxiliaryconditionstosolveadifferential(difference)equation.Initialrest:foracausalLTIsystem,ifx(t)=0fort<t0,theny(t)mustalsoequal0fort<t0.Itisimportanttoemphasizethattheconditionofinitialrestdoesnotspecifyazeroinitialconditionatafixedpointintime,butratheradjuststhispointintimesothattheresponseiszerountiltheinputbecomesnonzero.Thus,ifx(t)=0fort≤t0foracausalLTIsystem,theny(t)=0fort≤t0,andwewouldusetheinitialconditiony(t0)=0tosolvefortheoutputfort>t0.94AgeneralNth-orderlinearconstant-coefficientdifferentialequation:orandinitialcondition:
y(t0),y’(t0),……,y(N-1)(t0)(Nvalues)ForacausalLTIsystem:952)Discrete-timesystem:DifferenceEquationAgeneralNth-orderlinearconstant-coefficientdifferenceequation:orandinitialcondition:
y[0],y[-1],……,y[-(N-1)](Nvalues)Underinitialrest,thesystemdescribedbylinearconstant-coefficientdifferential(difference)equationiscausalandLTI.96Generalsolutionstosuchdifferenceequations:laterinChapter5or10.
Secondresolution:(recursivemethod)Firstresolution:N
auxiliaryconditions:973)BlockDiagramRepresentations(1)Dicrete-timesystemBasicelements:A.AnadderB.MultiplicationbyacoefficientC.AnunitdelayFirst-orderdifferenceequation:
additiondelaymultiplication
98Example:y[n]+ay[n-1]=bx[n]
(2)Continuous-timesystemFirst-orderdifferentialequation:differentiationThreebasicelementsinblockdiagram:adder,multiplierandintegrator.99Example:y’(t)+ay(t)=bx(t)
Suchblockdiagramscanalsobedevelopedforhigherordersystems.1005.SingularityFunctions1)Theunitimpulseasanidealizedshortpulse(1)(2)Important:forsmallΔ,theybothbehavesthesamefromanLTIsystem,seeFigure2.34.1012)Definingtheunitimpulsethroughconvolution---Operationaldefinition(運(yùn)算定義)Or,equivalently,Theprimaryimportanceoftheunitimpulseisnotwhatitisateachvalueoft,butratherwhatitdoesunderconvolution.1023)Differentiator,unitdoublet
(單位沖激偶)
103SUMMARY1.Arepresentationofanarbitrarydiscrete-timesignalasweightedsumsofshiftedunitsamples;2.Convolutionsumrepresentationfortheresponseofadiscrete-timeLTIsystems;3.Arepresentationofanarbitrarycontinuous-timesignalaweightedintegralsofshiftedunitimpulses;4.Convolutionintegralrepresentationforcontinuous-timeLTIsystems;1045.RelatingLTIsystemproperties,includingcausality,stability,tocorrespondingpropertiesoftheunitimpulse(sample)response;6.Someofthepropertiesofsystemsdescribedbylinearconstant-coefficientdifferential(difference)equations;7.Understandingoftheconditionofinitialrest.SUMMARY105INTRODUCTION
Representationofcontinuous-timeanddiscrete-timeperiodicsignals—Fourierseries.UseFouriermethodstoanalyzeandunderstandsignalsandLTIsystems.1061.TheResponseofLTISystemstoComplexExponentials
1)Importantconcept—signaldecomposition(1)basicsignals:possesstwopropertiesA.
Thesetofbasicsignalscanbeusedtoconstructabroadandusefulclassofsignals.
B.ItshouldbeconvenientforustorepresenttheresponseofanLTIsystemtoanysignalconstructedasalinearcombinationofthebasicsignals.(2)complexexponentialsignals
indiscretetime:
incontinuoustime:1072)TheResponseofanLTISys
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京市產(chǎn)權(quán)交易合同
- 個人名下房產(chǎn)無償合同
- 2025商業(yè)房產(chǎn)預(yù)租協(xié)議(合同版本)
- 2025商品交易合同(合同版本)
- 尊敬老師的名言(7篇)
- pvc地板膠合同標(biāo)準(zhǔn)文本
- 以風(fēng)景為話題作文(3篇)
- 保險(xiǎn)中合同范例
- 作為甲方合同標(biāo)準(zhǔn)文本
- 寫好房產(chǎn)合同標(biāo)準(zhǔn)文本
- 函數(shù)與導(dǎo)數(shù)-2025高考數(shù)學(xué)大題突破(含答案)
- 2025年中考數(shù)學(xué)模擬試卷一(含詳解)
- 小學(xué)生數(shù)據(jù)分析課件
- 術(shù)后鎮(zhèn)痛規(guī)范與流程
- 影視短劇投資合作合同
- 眼科護(hù)理培訓(xùn)課件
- 2025年甘肅農(nóng)墾集團(tuán)招聘筆試參考題庫含答案解析
- 2025年泰隆銀行招聘筆試參考題庫含答案解析
- 5.1導(dǎo)數(shù)的概念及其意義(同步練習(xí))(含解析)-【一堂好課】2022-2023學(xué)年高二數(shù)學(xué)同步名師重點(diǎn)課堂(人教A版2019選擇性必修第二冊)
- 09《戰(zhàn)國策》第八-整本書閱讀系列《經(jīng)典常談》名著閱讀與練習(xí)(解析版)
- 湖北武漢市2025屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析
評論
0/150
提交評論