版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
銀川市重點(diǎn)中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.2.一部影片在4個(gè)單位輪流放映,每個(gè)單位放映一場(chǎng),不同的放映次序有()A.種 B.4種C.種 D.種3.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.4.直線的傾斜角大小為()A. B.C. D.5.設(shè)為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)為,為拋物線上一點(diǎn).若,則的面積為()A. B.C. D.6.若,,則下列各式中正確的是()A. B.C. D.7.方程表示的曲線是()A.一個(gè)橢圓和一個(gè)點(diǎn) B.一個(gè)雙曲線的右支和一條直線C.一個(gè)橢圓一部分和一條直線 D.一個(gè)橢圓8.已知直線平分圓C:,則最小值為()A.3 B.C. D.9.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.10.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.11.如圖,空間四邊形中,,,,且,,則()A. B.C. D.12.過(guò)點(diǎn),的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或4二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的右焦點(diǎn)為,過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)、,則的面積的最大值為_(kāi)__________.14.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______15.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動(dòng)點(diǎn)在線段上,、分別為、的中點(diǎn).設(shè)異面直線與所成的角為,則的最大值為_(kāi)___16.函數(shù)在區(qū)間上的最小值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為數(shù)列的前n項(xiàng)和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說(shuō)明理由.18.(12分)數(shù)列{}的首項(xiàng)為,且(1)證明數(shù)列為等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;(2)若,求數(shù)列{}的前n項(xiàng)和19.(12分)已知函數(shù)(1)當(dāng)時(shí),求的極值;(2)討論的單調(diào)性20.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點(diǎn)C到平面的距離;(2)線段上是否存在點(diǎn)F,使與平面所成角正弦值為,若存在,求出,若不存在,說(shuō)明理由.21.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(diǎn)(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC22.(10分)已知在時(shí)有極值0.(1)求常數(shù),的值;(2)求在區(qū)間上的最值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分析可知對(duì)任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,則,當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.2、C【解析】根據(jù)題意得到一部影片在4個(gè)單位輪流放映,相當(dāng)于四個(gè)單位進(jìn)行全排列,即可得到答案.【詳解】一部影片在4個(gè)單位輪流放映,相當(dāng)于四個(gè)單位進(jìn)行全排列,所以不同的放映次序有種,故選:C3、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.4、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因?yàn)樗怨蔬x:B5、D【解析】先由拋物線方程求出點(diǎn)的坐標(biāo),準(zhǔn)線方程為,再由可求得點(diǎn)的橫坐標(biāo)為4,從而可求出點(diǎn)的縱坐標(biāo),進(jìn)而可求出的面積【詳解】由題意可得點(diǎn)的坐標(biāo),準(zhǔn)線方程為,因?yàn)闉閽佄锞€上一點(diǎn),,所以點(diǎn)的橫坐標(biāo)為4,當(dāng)時(shí),,所以,所以的面積為,故選:D6、D【解析】根據(jù)題意,結(jié)合,,利用不等式的性質(zhì)可判斷,從而判斷,再利用不等式性質(zhì)得出正確答案.【詳解】,,,又,,兩邊同乘以負(fù)數(shù),可知故選:D7、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個(gè)橢圓的一部分和一條直線.故選:C8、D【解析】根據(jù)直線過(guò)圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過(guò)點(diǎn),即,則,當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.9、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【詳解】.故選:D10、C【解析】按照程序框圖的流程進(jìn)行計(jì)算.【詳解】,故輸出S的值為.故選:C11、C【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】因?yàn)?,又因?yàn)?,,所?故選:C12、A【解析】解方程即得解.【詳解】由題得.故選:A【點(diǎn)睛】本題主要考查斜率的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析可知點(diǎn)、關(guān)于原點(diǎn)對(duì)稱,可知當(dāng)、為橢圓短軸的端點(diǎn)時(shí),的面積取得最大值.【詳解】橢圓中,,,則,則,由題意可知,、關(guān)于原點(diǎn)對(duì)稱,當(dāng)、為橢圓短軸的端點(diǎn)時(shí),的面積取得最大值,且最大值為.故答案為:.14、【解析】根據(jù)互斥事件與對(duì)立事件概率公式求解即可【詳解】設(shè)“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對(duì)立事件,所以因?yàn)?粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:15、【解析】如圖所示,建立空間直角坐標(biāo)系,設(shè),,,,,由向量法可得,令,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求得的最大值,從而可得答案【詳解】解:由題意,根據(jù)已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標(biāo)系不妨設(shè),則,0,,,0,,,1,,設(shè),,,,,,,,,,,令,,則,函數(shù)在上單調(diào)遞減,時(shí),函數(shù)取得最大值,的最大值為故答案為:16、【解析】先對(duì)函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時(shí)取等號(hào),即取等號(hào),因?yàn)?,所以函?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2)存在時(shí)是等差數(shù)列,詳見(jiàn)解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進(jìn)而可求數(shù)列的通項(xiàng)公式,即證.【小問(wèn)1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問(wèn)2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當(dāng)時(shí),由,∴數(shù)列的奇數(shù)項(xiàng)構(gòu)成的數(shù)列為首項(xiàng)為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項(xiàng)構(gòu)成的數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當(dāng)時(shí),,,故存在時(shí),使數(shù)列是等差數(shù)列.18、(1)證明見(jiàn)解析,;(2).【解析】(1)利用給定的遞推公式變形,再利用等比數(shù)列定義直接判斷并求出通項(xiàng)得解.(2)由(1)的結(jié)論求出,再利用裂項(xiàng)相消法計(jì)算作答.【小問(wèn)1詳解】數(shù)列{}中,,則,由得:,所以數(shù)列是首項(xiàng)為3,公比為2的等比數(shù)列,則有,即,所以數(shù)列{}的通項(xiàng)公式是.【小問(wèn)2詳解】由(1)知,,,則,所以數(shù)列{}的前n項(xiàng)和.19、(1)極小值為,無(wú)極大值(2)答案見(jiàn)解析【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導(dǎo)函數(shù),分類討論確定和解得單調(diào)性小問(wèn)1詳解】當(dāng)時(shí),,(x>0)則令,得,得,得,所以的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.所以的極小值為f(2)=,無(wú)極大值.【小問(wèn)2詳解】令則當(dāng)時(shí),在上單調(diào)遞減.當(dāng)時(shí),,得,,得;,得在上單調(diào)遞減,在上單調(diào)遞增,綜上所述,當(dāng)時(shí),在上單調(diào)遞減.當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.20、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點(diǎn)的坐標(biāo),利用點(diǎn)面距離公式即可求得點(diǎn)面距離(2)假設(shè)滿足題意的點(diǎn)存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點(diǎn)是否存在【小問(wèn)1詳解】解:如圖所示,取中點(diǎn),連結(jié),,因?yàn)槿切问堑妊苯侨切危?,因?yàn)槊婷?,面面面,所以平面,又因?yàn)?,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個(gè)法向量為,則,令可得,從而,又,故求點(diǎn)到平面的距離【小問(wèn)2詳解】解:假設(shè)存在點(diǎn),,滿足題意,點(diǎn)在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點(diǎn),點(diǎn)為的中點(diǎn),即21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)連結(jié),證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問(wèn)1詳解】連結(jié),則是的中點(diǎn),又是的中點(diǎn),,又平面,面,平面【小問(wèn)2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院專科護(hù)士培養(yǎng)使用制度
- 校園火災(zāi)應(yīng)急預(yù)案
- 醫(yī)院中央空調(diào)安裝工程施工組織設(shè)計(jì)方案
- 中心幼兒園矛盾排查制度
- 防撞護(hù)欄及翼緣板欄切割施工方案
- 幼兒園用電用氣設(shè)施安全管理制度
- 水泥混凝土路面施工專項(xiàng)安全方案
- 2024年版無(wú)擔(dān)保借款協(xié)議樣本文書(shū)版
- 酒吧消防應(yīng)急預(yù)案
- 預(yù)防未成年人違法犯罪工作制度
- 四年級(jí)【語(yǔ)文(統(tǒng)編版)】牛和鵝(第一課時(shí))課件
- 水利工程(水電站)安全生產(chǎn)標(biāo)準(zhǔn)化管理體系方案(達(dá)標(biāo)所需資料全套匯編)
- 2024年高考語(yǔ)文現(xiàn)代文閱讀之文學(xué)類閱讀教考銜接題型
- 海康威視公司發(fā)展戰(zhàn)略研究
- 行政事業(yè)單位會(huì)計(jì)監(jiān)督
- 2023-2024學(xué)年譯林版八年級(jí)上學(xué)期英語(yǔ)12月月考模擬試卷(含答案解析)
- 社區(qū)知識(shí)問(wèn)答活動(dòng)
- 永久避難硐室避險(xiǎn)安全知識(shí)課件
- 道路運(yùn)輸安全事故警示教育
- 高等教育農(nóng)學(xué)類自考-02678農(nóng)業(yè)推廣學(xué)筆試(2018-2023年)真題摘選含答案
- 女性的情緒及壓力管理
評(píng)論
0/150
提交評(píng)論