版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市靜海區(qū)重點中學2023-2024學年高二上數學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且,則的值為()A.4 B.2C.3 D.12.若直線與曲線有兩個公共點,則實數的取值范圍為()A. B.C. D.3.在正四面體中,點為所在平面上動點,若與所成角為定值,則動點的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線4.在平面直角坐標系xOy中,點(0,4)關于直線x-y+1=0的對稱點為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)5.在棱長為1的正四面體中,點滿足,點滿足,當和的長度都為最短時,的值是()A. B.C. D.6.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.7.已知向量為平面的法向量,點在內,點在外,則點到平面的距離為()A. B.C. D.8.設等比數列的前項和為,若,則的值是()A. B.C. D.49.已知為兩條不同的直線,為兩個不同的平面,則下列結論正確的是()A.若,則B.若,則C.若,則D.若,則10.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定11.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數學、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學、生物中選擇2門,一名同學隨機選擇3門功課,則該同學選到歷史、地理兩門功課的概率為()A. B.C. D.12.在平面直角坐標系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為______14.設實數x,y滿足,則的最小值為______15.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標,則完成目標的概率為_____________16.設雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,且,直線過與交于兩點,的周長為8(1)求的方程;(2)過作直線交于兩點,且向量與方向相同,求四邊形面積的取值范圍18.(12分)已知雙曲線及直線(1)若與有兩個不同的交點,求實數的取值范圍(2)若與交于,兩點,且線段中點的橫坐標為,求線段的長19.(12分)設數列的前項和為,且.(1)求數列的通項公式;(2)記,數列的前項和為,求不等式的解集.20.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標系中,橢圓:的面積為,兩焦點與短軸的一個頂點構成等邊三角形.(1)求橢圓的標準方程;(2)過點的直線與交于不同的兩點,求面積的最大值.21.(12分)已知橢圓的離心率,左、右焦點分別為、,點在橢圓上,過的直線交橢圓于、兩點.(1)求橢圓的標準方程;(2)求的面積的最大值.22.(10分)如圖,P為圓上一動點,點A坐標為,線段AP的垂直平分線交直線BP于點Q(1)求點Q的軌跡E的方程;(2)過點A的直線l交E于C,D兩點,若△BCD內切圓的半徑為,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得,利用空間向量數量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.2、D【解析】由題可知,曲線表示一個半圓,結合半圓的圖像和一次函數圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.3、B【解析】把條件轉化為與圓錐的軸重合,面與圓錐的相交軌跡即為點的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點的軌跡.根據題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進一步計算與平面所成角為,即時,軌跡為拋物線,時,軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點睛】本題考查了平面截圓錐面所得軌跡問題,考查了轉化化歸思想,屬于難題.4、D【解析】設出點(0,4)關于直線的對稱點的坐標,根據題意列出方程組,解方程組即可【詳解】解:設點(0,4)關于直線x-y+1=0的對稱點是(a,b),則,解得:,故選:D5、A【解析】根據給定條件確定點M,N的位置,再借助空間向量數量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內,又,即,于是得點N在直線上,棱長為1的正四面體中,當長最短時,點M是點A在平面上的射影,即正的中心,因此,,當長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A6、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A7、A【解析】先求出向量,再利用空間向量中點到平面的距離公式即可求解.【詳解】解:由題知,點在內,點在外,所以又向量為平面的法向量所以點到平面的距離為:故選:A.8、B【解析】根據題意,由等比數列的性質可知成等比數列,從而可得,即可求出的結果.【詳解】解:已知等比數列的前項和為,,由等比數列的性質得:成等比數列,且公比不為-1即成等比數列,,,.故選:B.9、D【解析】根據空間里面直線與平面、平面與平面位置關系的相關定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質可得,故該選項正確.故選:D.10、B【解析】構造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內,平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.11、A【解析】先由列舉法計算出基本事件的總數,然后再求出該同學選到歷史、地理兩門功課的基本事件的個數,基本事件個數比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學、生物為、、、,從中選擇2門;則該同學隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎題型.12、A【解析】根據條件可知四邊形為正方形,從而根據邊長相等,列式求雙曲線的離心率.【詳解】不妨設在第一象限,則,根據題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點為,連接,由面面角的定義得出二面角的平面角為,再結合等腰直角三角形的性質得出二面角的大小.【詳解】取的中點為,連接,因為,所以二面角的平面角為,因為,,所以為等腰直角三角形,即二面角的大小為.故答案為:14、5【解析】畫出可行域,利用目標函數的幾何意義即可求解【詳解】畫出可行域和目標函數如圖所示:根據平移知,當目標函數經過點時,有最小值為5.故答案為:5.15、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標的概率為.故答案為:16、【解析】根據已知可得,結合雙曲線中的關系,即可求解.【詳解】由雙曲線方程可得其焦點在軸上,因為其一條漸近線為,所以,.故答案為:【點睛】本題考查的是有關雙曲線性質,利用漸近線方程與離心率關系是解題的關鍵,要注意判斷焦點所在位置,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據給定條件直接求出半焦距,及長半軸長即可作答.(2)根據給定條件結合橢圓的對稱性可得四邊形為平行四邊形,設出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理、對勾函數性質計算作答.【小問1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長,解得,,因此橢圓的方程為.【小問2詳解】依題意,直線的斜率不為0,設直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點O為對稱中心的中心對稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調遞增,則當時,,即,從而可得,所以四邊形面積的取值范圍為.【點睛】結論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積18、(1)且;(2)【解析】(1)聯(lián)立直線與雙曲線方程,利用方程組與兩個交點,求出k的范圍(2)設交點A(x1,y1),B(x2,y2),利用韋達定理以及弦長公式求解即可【詳解】(1)聯(lián)立y=2可得∵與有兩個不同的交點,且,且(2)設,由(1)可知,又中點的橫坐標為,,或又由(1)可知,為與有兩個不同交點時,19、(1)(2)【解析】(1)利用與的關系求解即可;(2)首先利用裂項求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當時,,當時,也符合上式,即數列的通項公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.20、(1);(2).【解析】(1)根據題意計算得到,得到橢圓方程.(2)設直線的方程為,聯(lián)立方程,根據韋達定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標準方程是.(2)由題意直線的斜率不能為,設直線的方程為,由方程組得,設,,所以,,所以,所以,令(),則,,因為在上單調遞增,所以當,即時,面積取得最大值為.【點睛】本題考查了橢圓方程,橢圓內三角形面積的最值問題,意在考查學生的計算能力和綜合應用能力.21、(1)(2)【解析】(1)利用橢圓的離心率、點在橢圓上以及得到的方程組,進而得到橢圓的標準方程;(2)設出直線方程,聯(lián)立直線和橢圓方程,得到關于的一元二次方程,利用根與系數的關系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點代入橢圓方程,得,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防器材智能化改造升級服務合同2篇
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓練合同范本大全:企業(yè)團隊凝聚力提升計劃3篇
- 二零二四年度2024年三人健身產業(yè)合作合同6篇
- 2025年洗車場車輛停放管理及承包合同3篇
- 2025版航空航天專用鋁合金采購合同書4篇
- 二零二四年云服務器租賃與智能運維合同3篇
- 個人汽車租賃合同樣本 2024年版版B版
- 2025年度臨時臨時設施租賃合同標準范本4篇
- 2025年無償使用政府辦公樓場地舉辦會議合同范本3篇
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產注意安全生產
- 保險行業(yè)加強清廉文化建設
- Hive數據倉庫技術與應用
- 數字的秘密生活:最有趣的50個數學故事
評論
0/150
提交評論