蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇州大學(xué)附屬中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題2.已知是兩條不同的直線,是兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則3.已知橢圓方程為:,則其離心率為()A. B.C. D.4.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.5.十二平均律是我國(guó)明代音樂(lè)理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬(wàn)歷十二年(公元1584年),他寫(xiě)成《律學(xué)新說(shuō)》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個(gè)正數(shù),使包含1和2的這13個(gè)數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個(gè)數(shù)應(yīng)為()A. B.C. D.6.的展開(kāi)式中,常數(shù)項(xiàng)為()A. B.C. D.7.如圖,在四面體中,,,,,為線段的中點(diǎn),則等于()A B.C. D.8.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁9.已知,,,,則()A. B.C. D.10.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.811.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長(zhǎng)為為的中點(diǎn),為面內(nèi)一點(diǎn).若點(diǎn)到面的距離與到直線的距離相等,則三棱錐體積的最小值為_(kāi)_________14.若“”是真命題,則實(shí)數(shù)的最小值為_(kāi)____________.15.設(shè)命題:,,則為_(kāi)_____.16.?dāng)?shù)列中,,,設(shè)(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項(xiàng)和;(3)若,為數(shù)列的前項(xiàng)和,求不超過(guò)的最大的整數(shù)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值18.(12分)物聯(lián)網(wǎng)(Internetofthings)是一個(gè)基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能夠被獨(dú)立尋址的普通物理對(duì)象實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò),具有十分廣闊的市場(chǎng)前景.現(xiàn)有一家物流公司計(jì)劃租地建造倉(cāng)庫(kù)存儲(chǔ)貨物,經(jīng)過(guò)市場(chǎng)調(diào)查了解到下列信息:倉(cāng)庫(kù)每月土地占地費(fèi)(單位:萬(wàn)元)與倉(cāng)庫(kù)到車站的距離x(單位:千米)之間的關(guān)系為,每月庫(kù)存貨物費(fèi)(單位:萬(wàn)元)與x之間的關(guān)系為:;若在距離車站11.5千米建倉(cāng)庫(kù),則和分別為4萬(wàn)元和23萬(wàn)元.(1)求的值;(2)這家公司應(yīng)該把倉(cāng)庫(kù)建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最???最小費(fèi)用是多少?19.(12分)等比數(shù)列的各項(xiàng)均為正數(shù),且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和.20.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點(diǎn),且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積21.(12分)(1)求過(guò)點(diǎn),且與直線垂直的直線方程;(2)甲,乙,丙等7名同學(xué)站成一排,若甲和乙相鄰,但甲乙二人都不和丙相鄰,則共有多少種不同排法?22.(10分)已知:,,:,,且為真命題,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)復(fù)合命題的真假表即可得出結(jié)果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個(gè)真命題,所以為真命題,即為假命題,為真命題.故選:A2、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對(duì)四個(gè)選項(xiàng)得答案【詳解】解:對(duì)于A:若,則或,故A錯(cuò)誤;對(duì)于B:若,則或與相交,故B錯(cuò)誤;對(duì)于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對(duì)于D:若則與平行、相交、或異面,故D錯(cuò)誤;故選:C3、B【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,確定,計(jì)算離心率即可.【詳解】由知,,,,即,故選:B4、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B5、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式即可求解.【詳解】用表示這個(gè)數(shù)列,依題意,,則,,第四個(gè)數(shù)即.故選:C.6、A【解析】寫(xiě)出展開(kāi)式通項(xiàng),令的指數(shù)為零,求出參數(shù)的值,代入通項(xiàng)計(jì)算即可得解.【詳解】的展開(kāi)式通項(xiàng)為,令,可得,因此,展開(kāi)式中常數(shù)項(xiàng)為.故選:A.7、D【解析】根據(jù)空間向量的線性運(yùn)算求解【詳解】由已知,故選:D8、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對(duì)幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D9、D【解析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)?,故,故,又,在上的增函?shù),故,故,故選:D.10、D【解析】使用遞推公式逐個(gè)求解,直到求出即可.【詳解】因?yàn)樗?,,?故選:D11、A【解析】由,結(jié)合基本不等式可得,由此可得,由此說(shuō)明“”是“”的充分條件,再通過(guò)舉反例說(shuō)明“”不是“”的必要條件,由此確定正確選項(xiàng).【詳解】∵,∴(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),∴(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),若,則,∴,所以“”是“”的充分條件,當(dāng)時(shí),,此時(shí),∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.12、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由題意可知,點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時(shí),切點(diǎn)為點(diǎn),此時(shí)的面積最小,則三棱錐體積的最小【詳解】因?yàn)闉槊鎯?nèi)一點(diǎn),且點(diǎn)到面的距離與到直線的距離相等,所以點(diǎn)在平面內(nèi)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時(shí)切點(diǎn)為,且的面積最小,因?yàn)辄c(diǎn)到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:14、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因?yàn)楹瘮?shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實(shí)數(shù)的最小值為1.所以答案應(yīng)填:1.考點(diǎn):1、命題;2、正切函數(shù)的性質(zhì).15、,【解析】由全稱命題的否定即可得到答案【詳解】根據(jù)全稱命題的否定,可得為,【點(diǎn)睛】本題考查了含有量詞的命題否定,屬于基礎(chǔ)題16、(1)證明見(jiàn)解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項(xiàng),利用錯(cuò)位相減法求解即可;(3)先求出,再求出的表達(dá)式,利用裂項(xiàng)相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過(guò)的最大的整數(shù)是2021三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點(diǎn),分別以,,方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個(gè)法向量和平面DCM的一個(gè)法向量,然后由求解【小問(wèn)1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問(wèn)2詳解】如圖,以A為原點(diǎn),分別以,,的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個(gè)法向量,則,不妨令,可得設(shè)為平面DCM的一個(gè)法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為18、(1)(2)這家公司應(yīng)該把倉(cāng)庫(kù)建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最小,最小費(fèi)用是萬(wàn)元【解析】(1)將題中數(shù)據(jù)代入解析式可求;(2)利用基本不等式可求解.【小問(wèn)1詳解】由題意,,當(dāng)時(shí),,,解得.【小問(wèn)2詳解】設(shè)兩項(xiàng)費(fèi)用之和為(單位:萬(wàn)元),則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,解得.所以這家公司應(yīng)該把倉(cāng)庫(kù)建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最小,最小費(fèi)用是萬(wàn)元.19、(1);(2).【解析】(1)根據(jù)題意求出首項(xiàng)和公比即可得出通項(xiàng)公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項(xiàng)和公式即可求出.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項(xiàng),記數(shù)列前項(xiàng)和為,則.20、(1)證明見(jiàn)解析;(2).【解析】(1)過(guò)M作MN∥CD交PD于點(diǎn)N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過(guò)B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過(guò)M作MN∥CD交PD于點(diǎn)N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過(guò)B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點(diǎn)M到平面PAD的距離等于點(diǎn)B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.21、(1);(2)960【解析】(1)根據(jù)題意,設(shè)要求直線為,將點(diǎn)的坐標(biāo)代入,求出的值,即可得答案;(2)根據(jù)題意,分2步進(jìn)行分析:先將除甲乙丙之外的4人全排列,再將甲乙看成一個(gè)整體,與丙一起安排在4人的空位中,由分步計(jì)數(shù)原理計(jì)算可得答案【詳解】解:(1)根據(jù)題意,設(shè)所求直線為,又由所求直線經(jīng)過(guò)點(diǎn),即

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論