版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
蘇州市蘇州實(shí)驗(yàn)中學(xué)2024屆數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.?dāng)?shù)列是等比數(shù)列,是其前n項(xiàng)之積,若,則的值是()A.1024 B.256C.2 D.5123.在正方體中,P,Q兩點(diǎn)分別從點(diǎn)B和點(diǎn)出發(fā),以相同的速度在棱BA和上運(yùn)動(dòng)至點(diǎn)A和點(diǎn),在運(yùn)動(dòng)過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.4.已知向量與平行,則()A. B.C. D.5.某班級(jí)從5名同學(xué)中挑出2名同學(xué)進(jìn)行大掃除,若小王和小張?jiān)谶@5名同學(xué)之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.6.?dāng)?shù)列滿足,,,則數(shù)列的前10項(xiàng)和為()A.60 B.61C.62 D.637.在數(shù)列中,,則等于A. B.C. D.8.已知,分別為橢圓的左右焦點(diǎn),為坐標(biāo)原點(diǎn),橢圓上存在一點(diǎn),使得,設(shè)的面積為,若,則該橢圓的離心率為()A. B.C. D.9.已知,若,則()A. B.2C. D.e10.某軟件研發(fā)公司對(duì)某軟件進(jìn)行升級(jí),主要是對(duì)軟件程序中的某序列重新編輯,編輯新序列為,它的第項(xiàng)為,若序列的所有項(xiàng)都是1,且,.記數(shù)列的前項(xiàng)和、前項(xiàng)積分別為,,若,則的最小值為()A.2 B.3C.4 D.511.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了一個(gè)原理“冪勢(shì)既同,則積不容異”,即夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,則該幾何體的體積為________.14.若點(diǎn)為圓的弦的中點(diǎn),則弦所在直線方程為________.15.已知,,且,則的最小值為______.16.過點(diǎn),且垂直于的直線方程為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)新冠肺炎疫情發(fā)生以來,我國(guó)某科研機(jī)構(gòu)開展應(yīng)急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進(jìn)入二期臨床試驗(yàn).根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會(huì)產(chǎn)生抗體,人體中檢測(cè)到抗體,說明有抵御病毒的能力.通過檢測(cè),用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬國(guó)際單位/毫升),現(xiàn)測(cè)得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.(1)根據(jù)散點(diǎn)圖判斷,與(a,b,c,d均為大于0的實(shí)數(shù))哪一個(gè)更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預(yù)測(cè)該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測(cè)數(shù)據(jù)中隨機(jī)抽取4天的數(shù)據(jù)作進(jìn)一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學(xué)期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過點(diǎn),,,,的線性回歸方程的系數(shù)公式,;.18.(12分)已知是等差數(shù)列,,.(1)求的通項(xiàng)公式;(2)若數(shù)列是公比為的等比數(shù)列,,求數(shù)列的前項(xiàng)和.19.(12分)已知數(shù)列的前項(xiàng)和為,且,(1)求的通項(xiàng)公式;(2)求的最小值20.(12分)已知拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.(1)求拋物線E的方程;(2)點(diǎn)A、B為拋物線E上異于原點(diǎn)O的兩不同的點(diǎn),且滿足.若直線AB與橢圓恒有公共點(diǎn),求m的取值范圍.21.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內(nèi)有一個(gè)定點(diǎn)A,且,折疊紙片,使圓上某一點(diǎn)剛好與A點(diǎn)重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點(diǎn)時(shí),所有折痕與的交點(diǎn)形成的曲線記為C.(1)求曲線C的焦點(diǎn)在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(diǎn)(左焦點(diǎn)為)的直線l與曲線C交于不同的兩點(diǎn)M,N,記的面積為S,試求S的取值范圍.22.(10分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A2、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項(xiàng)公式可求得答案.【詳解】解:因?yàn)閿?shù)列是等比數(shù)列,是其前n項(xiàng)之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.3、C【解析】先過點(diǎn)作于點(diǎn),連接,根據(jù)題意,得到即為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,設(shè),推出,進(jìn)而可求出結(jié)果.【詳解】過點(diǎn)作于點(diǎn),連接,因?yàn)樗睦庵鶠檎襟w,所以易得平面,因此即為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,設(shè),則,,因?yàn)閮牲c(diǎn)分別從點(diǎn)和點(diǎn)出發(fā),以相同的速度在棱和上運(yùn)動(dòng)至點(diǎn)和點(diǎn),所以,因此,所以,因?yàn)?,所以,則,因此.故選:C.【點(diǎn)睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.4、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項(xiàng).【詳解】由已知,解得,,則.故選:D.5、B【解析】記另3名同學(xué)分別為a,b,c,應(yīng)用列舉法求古典概型的概率即可.【詳解】記另3名同學(xué)分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.6、B【解析】討論奇偶性,應(yīng)用等差、等比前n項(xiàng)和公式對(duì)作分組求和即可.【詳解】當(dāng)且為奇數(shù)時(shí),,則,當(dāng)且為偶數(shù)時(shí),,則,∴.故選:B.7、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對(duì)于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來觀察前面有限項(xiàng)的規(guī)律8、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.9、B【解析】求得導(dǎo)函數(shù),則,計(jì)算即可得出結(jié)果.【詳解】,.,解得:.故選:B10、C【解析】先利用序列的所有項(xiàng)都是1,得到,整理后得到是等比數(shù)列,進(jìn)而求出公比和首項(xiàng),從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因?yàn)?,,所以,又序列的所有?xiàng)都是1,所以它的第項(xiàng),所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.11、A【解析】對(duì)函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時(shí),,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時(shí),,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.12、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)?,所以,因?yàn)?,所以,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)?,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長(zhǎng)為l,高為h,底面半徑為r,因?yàn)閳A錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:14、【解析】因?yàn)闉閳A的弦的中點(diǎn),所以圓心坐標(biāo)為,,所在直線方程為,化簡(jiǎn)為,故答案為.考點(diǎn):1、兩直線垂直斜率的關(guān)系;2、點(diǎn)斜式求直線方程.15、4【解析】利用“1”的妙用,運(yùn)用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當(dāng)且僅當(dāng)且,即,時(shí),等號(hào)成立,則的最小值為4.故答案為:.16、【解析】求出,可得垂直于的直線的斜率為,再利用點(diǎn)斜式可得結(jié)果.【詳解】因?yàn)椋?,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點(diǎn)睛】對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡(jiǎn)單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),4023.87(3)分布列答案見解析,數(shù)學(xué)期望:【解析】(1)由于這些點(diǎn)分布在一條曲線的附近,從而可選出回歸方程,(2)設(shè),,則建立w關(guān)于x的回歸方程,然后根據(jù)公式和表中的數(shù)據(jù)求解回歸方程即可,再將代入回歸方程可求得在注射疫苗后的第10天的抗體含量水平值,(3)由題意可知x的可能取值為0,1,2,然后求對(duì)應(yīng)的概率,從而可求出分布列和期望【小問1詳解】根據(jù)散點(diǎn)圖可知這些點(diǎn)分布在一條曲線的附近,所以更適合作為描述y與x關(guān)系的回歸方程類型.【小問2詳解】設(shè),變換后可得,設(shè),建立w關(guān)于x的回歸方程,,所以所以w關(guān)于x的回歸方程為,所以,當(dāng)時(shí),,即該志愿者在注射疫苗后的第10天的抗體含量水平值約為4023.87miu/mL.【小問3詳解】由表格數(shù)據(jù)可知,第5,6天的y值大于50,故x的可能取值為0,1,2,,,,X的分布列為012.18、(1)(2)【解析】(1)由題意得解方程組求出,從而可求出數(shù)列的通項(xiàng)公式,(2)因?yàn)槭枪葹榈牡缺葦?shù)列,又,,所以,從而可得,然后利用分組求和法求解即可【小問1詳解】設(shè)等差數(shù)列的公差為.由題意得解得,.所以.【小問2詳解】因?yàn)槭枪葹榈牡缺葦?shù)列,又,,所以,所以.所以.19、(1)(2)【解析】(1)由可求得的值,由可求得數(shù)列的通項(xiàng)公式;(2)求得,利用二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】解:由題意可得,解得,所以,.當(dāng)時(shí),,當(dāng)時(shí),,也滿足,故對(duì)任意的,.【小問2詳解】解:,所以,當(dāng)或時(shí),取得最小值,且最小值為.20、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達(dá)定理及可得,從而可得直線AB恒過定點(diǎn),進(jìn)而可得定點(diǎn)在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因?yàn)閽佄锞€上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,可得,所以,因?yàn)?,即,所以,所以,即,所以,所以直線,所以直線AB恒過定點(diǎn),因?yàn)橹本€AB與橢圓恒有公共點(diǎn),所以定點(diǎn)在橢圓內(nèi)部或橢圓上,即,所以.21、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點(diǎn)的橢圓;(2)分為l斜率存在和不存在時(shí)討論,斜率存在時(shí),直線方程和橢圓方程聯(lián)立,用韋達(dá)定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點(diǎn)G坐標(biāo)原點(diǎn),OA所在直線為x軸建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程施工合同補(bǔ)充協(xié)議模板
- 2024保險(xiǎn)合同解除的原因
- 2024年度某玩具公司向某國(guó)外買家出口玩具產(chǎn)品的合同
- 五方土地買賣合同
- 2024裝修裝飾合同范本
- 攝影設(shè)備購買合同樣本
- 產(chǎn)品眾籌合作意向書
- 2024花生買賣合同范文
- 2024【溫室大棚建造】溫室大棚建造合同范本2
- 2024展會(huì)布置合同
- 專利文獻(xiàn)檢索方法與步驟課件
- 第5講-申論大作文課件
- 大咯血的護(hù)理及急救課件
- 讀《學(xué)生的精神》有感
- Module 5 Museums模塊測(cè)試題二(含答案)(外研版九年級(jí)上冊(cè))
- 張家爺爺?shù)男』ü?
- 怎樣通知最快(課件)五年級(jí)下冊(cè)數(shù)學(xué)人教版
- 《通用量具培訓(xùn)》教材課件
- 第五章量綱分析和相似原理
- 設(shè)備設(shè)施拆除報(bào)廢申請(qǐng)表
- 讀音??碱}型第一輪復(fù)習(xí)專項(xiàng)訓(xùn)練(試題)人教PEP版英語六年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論