深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)_第1頁(yè)
深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)_第2頁(yè)
深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)_第3頁(yè)
深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)_第4頁(yè)
深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

深圳羅湖區(qū)翠園中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(解析版)一、解答題1.如圖1,點(diǎn)在直線(xiàn)、之間,且.(1)求證:;(2)若點(diǎn)是直線(xiàn)上的一點(diǎn),且,平分交直線(xiàn)于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線(xiàn)、外一點(diǎn),且滿(mǎn)足,,與交于點(diǎn).已知,且,則的度數(shù)為_(kāi)_____(請(qǐng)直接寫(xiě)出答案,用含的式子表示).2.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開(kāi)展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線(xiàn)、上的一點(diǎn),點(diǎn)為平行線(xiàn)間一點(diǎn),請(qǐng)直接寫(xiě)出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線(xiàn)與射線(xiàn)交于點(diǎn),直線(xiàn),直線(xiàn)分別交、于點(diǎn)、,直線(xiàn)分別交、于點(diǎn)、,點(diǎn)在射線(xiàn)上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線(xiàn)段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫(huà)出滿(mǎn)足條件的所有圖形并直接寫(xiě)出,,之間的數(shù)量關(guān)系.3.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問(wèn)題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫(xiě)出了該問(wèn)題的證明,請(qǐng)你幫他把證明過(guò)程補(bǔ)充完整.證明:過(guò)點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請(qǐng)你參考小亮思考問(wèn)題的方法,解決問(wèn)題:如圖乙,已知:直線(xiàn)ab,點(diǎn)A,B在直線(xiàn)a上,點(diǎn)C,D在直線(xiàn)b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線(xiàn)交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請(qǐng)你求出∠BED的度數(shù)(用含有α,β的式子表示).4.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長(zhǎng)方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.①如圖2,當(dāng)n=25°,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù);②當(dāng)0°<n<180°時(shí),是否會(huì)存在三角板某一邊所在的直線(xiàn)與直尺(有四條邊)某一邊所在的直線(xiàn)垂直?如果存在,請(qǐng)直接寫(xiě)出所有n的值和對(duì)應(yīng)的那兩條垂線(xiàn);如果不存在,請(qǐng)說(shuō)明理由.5.已知AB∥CD,∠ABE與∠CDE的角分線(xiàn)相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線(xiàn),且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫(xiě)出∠M與∠BED之間的數(shù)量關(guān)系二、解答題6.已知,直角的邊與直線(xiàn)a分別相交于O、G兩點(diǎn),與直線(xiàn)b分別交于E,F(xiàn)點(diǎn),且.(1)將直角如圖1位置擺放,如果,則________;(2)將直角如圖2位置擺放,N為上一點(diǎn),,請(qǐng)寫(xiě)出與之間的等量關(guān)系,并說(shuō)明理由;(3)將直角如圖3位置擺放,若,延長(zhǎng)交直線(xiàn)b于點(diǎn)Q,點(diǎn)P是射線(xiàn)上一動(dòng)點(diǎn),探究與的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.7.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結(jié)論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請(qǐng)說(shuō)明理由.(3)將三角板繞點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),直到邊與重合即停止,轉(zhuǎn)動(dòng)的過(guò)程中當(dāng)兩塊三角板恰有兩邊平行時(shí),請(qǐng)直接寫(xiě)出所有可能的度數(shù).8.長(zhǎng)江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線(xiàn)自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線(xiàn)自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿(mǎn)足.假定這一帶長(zhǎng)江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線(xiàn)先轉(zhuǎn)動(dòng)45秒,燈A射線(xiàn)才開(kāi)始轉(zhuǎn)動(dòng),當(dāng)燈B射線(xiàn)第一次到達(dá)時(shí)運(yùn)動(dòng)停止,問(wèn)A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線(xiàn)到達(dá)之前.若射出的光束交于點(diǎn)C,過(guò)C作交于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.9.如圖1,為直線(xiàn)上一點(diǎn),過(guò)點(diǎn)作射線(xiàn),將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線(xiàn)上,另一邊與都在直線(xiàn)的上方,將圖1中的三角板繞點(diǎn)以每秒3°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周.(1)幾秒后與重合?(2)如圖2,經(jīng)過(guò)秒后,,求此時(shí)的值.(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線(xiàn)也繞點(diǎn)以每秒6°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,那么經(jīng)過(guò)多長(zhǎng)時(shí)間與重合?請(qǐng)畫(huà)圖并說(shuō)明理由.(4)在(3)的條件下,求經(jīng)過(guò)多長(zhǎng)時(shí)間平分?請(qǐng)畫(huà)圖并說(shuō)明理由.10.如圖所示,已知,點(diǎn)P是射線(xiàn)AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分和,分別交射線(xiàn)AM于點(diǎn)C、D,且(1)求的度數(shù).(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使時(shí),求的度數(shù).三、解答題11.在中,射線(xiàn)平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),的角平分線(xiàn)所在直線(xiàn)與射線(xiàn)交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.12.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線(xiàn)M1O與∠CMnMn-1的角平分線(xiàn)MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)13.操作示例:如圖1,在△ABC中,AD為BC邊上的中線(xiàn),△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.14.已知,,點(diǎn)為射線(xiàn)上一點(diǎn).(1)如圖1,寫(xiě)出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線(xiàn)上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).15.已知,如圖1,直線(xiàn)l2⊥l1,垂足為A,點(diǎn)B在A(yíng)點(diǎn)下方,點(diǎn)C在射線(xiàn)AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線(xiàn)11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線(xiàn)l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線(xiàn),交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線(xiàn)AM上運(yùn)動(dòng),∠BDC的角平分線(xiàn)交EB的延長(zhǎng)線(xiàn)于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫(xiě)出比值.【參考答案】一、解答題1.(1)見(jiàn)解析;(2)10°;(3)【分析】(1)過(guò)點(diǎn)E作EF∥CD,根據(jù)平行線(xiàn)的性質(zhì),兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過(guò)點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見(jiàn)解析;(2)10°;(3)【分析】(1)過(guò)點(diǎn)E作EF∥CD,根據(jù)平行線(xiàn)的性質(zhì),兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過(guò)點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線(xiàn)的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過(guò)點(diǎn)N作NP∥CD,過(guò)點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過(guò)點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過(guò)點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過(guò)點(diǎn)N作NP∥CD,過(guò)點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義,解決問(wèn)題的關(guān)鍵是作平行線(xiàn)構(gòu)造相等的角,利用兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,同位角相等來(lái)計(jì)算和推導(dǎo)角之間的關(guān)系.2.(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線(xiàn)的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線(xiàn)的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類(lèi)討論解析:(1);(2)①,理由見(jiàn)解析;②圖見(jiàn)解析,或【分析】(1)作PQ∥EF,由平行線(xiàn)的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線(xiàn)的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類(lèi)討論:當(dāng)點(diǎn)在延長(zhǎng)線(xiàn)時(shí);當(dāng)在之間時(shí);與①同理,利用平行線(xiàn)的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線(xiàn)時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線(xiàn)平行同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.3.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線(xiàn)的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過(guò)點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線(xiàn)的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過(guò)點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問(wèn)題的方法即可求∠BED的度數(shù);②如圖2,過(guò)點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問(wèn)題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過(guò)點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過(guò)點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過(guò)點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線(xiàn)的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線(xiàn)的判定與性質(zhì).4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見(jiàn)解析【分析】(1)根據(jù)鄰補(bǔ)角的定義和平行線(xiàn)的性質(zhì)解答;(2)①根據(jù)鄰補(bǔ)角的定義求出∠ABE,再根據(jù)兩直線(xiàn)平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見(jiàn)解析【分析】(1)根據(jù)鄰補(bǔ)角的定義和平行線(xiàn)的性質(zhì)解答;(2)①根據(jù)鄰補(bǔ)角的定義求出∠ABE,再根據(jù)兩直線(xiàn)平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)求出∠BCG,然后根據(jù)周角等于360°計(jì)算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當(dāng)n=30°時(shí),∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當(dāng)n=90°時(shí),∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當(dāng)n=120°時(shí),∴AB⊥DE(GF).【點(diǎn)睛】本題考查了平行線(xiàn)角的計(jì)算,垂線(xiàn)的定義,主要利用了平行線(xiàn)的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線(xiàn)的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線(xiàn)的定義得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線(xiàn)的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線(xiàn)的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線(xiàn)的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線(xiàn)相交于,,,、分別是和的角平分線(xiàn),,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線(xiàn)相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線(xiàn)平行同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ)的性質(zhì).二、解答題6.(1)146°;(2)∠AOG+∠NEF=90°;(3)見(jiàn)解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線(xiàn)的性質(zhì)求解.(2)作CP//a,由平行線(xiàn)的性質(zhì)及等量代換得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)見(jiàn)解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線(xiàn)的性質(zhì)求解.(2)作CP//a,由平行線(xiàn)的性質(zhì)及等量代換得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分類(lèi)討論點(diǎn)P在線(xiàn)段GF上或線(xiàn)段GF延長(zhǎng)線(xiàn)上兩種情況,過(guò)點(diǎn)P作a,b的平行線(xiàn)求解.【詳解】解:(1)如圖,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如圖,作CP//a,則CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如圖,當(dāng)點(diǎn)P在GF上時(shí),作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如圖,當(dāng)點(diǎn)P在GF延長(zhǎng)線(xiàn)上時(shí),作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【點(diǎn)睛】本題考查平行線(xiàn)的性質(zhì)的應(yīng)用,解題關(guān)鍵是熟練掌握平行線(xiàn)的性質(zhì),通過(guò)添加輔助線(xiàn)及分類(lèi)討論的方法求解.7.(1)②③;(2)相等,理由見(jiàn)解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線(xiàn)的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷解析:(1)②③;(2)相等,理由見(jiàn)解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線(xiàn)的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯(cuò)誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點(diǎn)睛】本題考查了平行線(xiàn)的判定和性質(zhì),角平分線(xiàn)的定義,解題的關(guān)鍵是理解題意,分情況畫(huà)出圖形,學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題.8.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問(wèn)題即可.(2)分三種情形,利用平行線(xiàn)的性質(zhì)構(gòu)建方程即可解決問(wèn)題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問(wèn)題即可.(2)分三種情形,利用平行線(xiàn)的性質(zhì)構(gòu)建方程即可解決問(wèn)題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行,①當(dāng)時(shí),,解得;②當(dāng)時(shí),,解得;③當(dāng)時(shí),,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時(shí),兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線(xiàn)的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考??碱}型.9.(1)10秒;(2)20秒;(3)20秒,畫(huà)圖見(jiàn)解析;(4)秒,畫(huà)圖見(jiàn)解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫(huà)圖見(jiàn)解析;(4)秒,畫(huà)圖見(jiàn)解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據(jù)轉(zhuǎn)動(dòng)速度關(guān)系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵M(jìn)N∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經(jīng)過(guò)t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點(diǎn)O以每秒3°的速度,射線(xiàn)OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經(jīng)過(guò)20秒時(shí)間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點(diǎn)O以每秒3°的速度,射線(xiàn)OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經(jīng)過(guò)秒OC平分∠MOB.【點(diǎn)睛】此題考查了平行線(xiàn)的判定與性質(zhì),角的計(jì)算以及方程的應(yīng)用,關(guān)鍵是應(yīng)該認(rèn)真審題并仔細(xì)觀(guān)察圖形,找到各個(gè)量之間的關(guān)系求出角的度數(shù)是解題的關(guān)鍵.10.(1);(2)不變化,,理由見(jiàn)解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線(xiàn)的性質(zhì),得;再根據(jù)平行線(xiàn)的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線(xiàn)的性質(zhì),得,;結(jié)合角平分線(xiàn)性質(zhì),得,即可完成求解解析:(1);(2)不變化,,理由見(jiàn)解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線(xiàn)的性質(zhì),得;再根據(jù)平行線(xiàn)的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線(xiàn)的性質(zhì),得,;結(jié)合角平分線(xiàn)性質(zhì),得,即可完成求解;(3)根據(jù)平行線(xiàn)的性質(zhì),得;結(jié)合,推導(dǎo)得;再結(jié)合(1)的結(jié)論計(jì)算,即可得到答案.【詳解】(1)∵BC,BD分別評(píng)分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴與之間的數(shù)量關(guān)系保持不變;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【點(diǎn)睛】本題考查了角平分線(xiàn)、平行線(xiàn)的知識(shí);解題的關(guān)鍵是熟練掌握角平分線(xiàn)、平行線(xiàn)的性質(zhì),從而完成求解.三、解答題11.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線(xiàn)ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.12.(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過(guò)E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于A(yíng)B,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過(guò)點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義,解決此類(lèi)題目,過(guò)拐點(diǎn)作平行線(xiàn)是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.13.解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線(xiàn)AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問(wèn)題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線(xiàn)AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.14.(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠C

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論