云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省怒江市2024屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.2.已知,則a,b,c的大小關(guān)系為()A. B.C. D.3.命題“,”的否定為()A., B.,C., D.,4.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.5.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.6.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.7.已知數(shù)列的前項和為,當(dāng)時,()A.11 B.20C.33 D.358.已知圓的方程為,則圓心的坐標(biāo)為()A. B.C. D.9.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.202210.已知雙曲線的左、右焦點分別為,,為坐標(biāo)原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.11.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經(jīng)典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關(guān)數(shù)據(jù)(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.40012.如圖,空間四邊形中,,,,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.14.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.15.在三棱錐中,點Р在底面ABC內(nèi)的射影為Q,若,則點Q定是的______心16.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)討論的單調(diào)性:(2)若對恒成立,求的取值范圍18.(12分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.19.(12分)設(shè)數(shù)列的前項和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值20.(12分)某車間打算購買2臺設(shè)備,該設(shè)備有一個易損零件,在購買設(shè)備時可以額外購買這種易損零件作為備件,價格為每個100元.在設(shè)備使用期間,零件損壞,備件不足再臨時購買該零件,價格為每個300元.在使用期間,每臺設(shè)備需要更換的零件個數(shù)的分布列為567.表示2臺設(shè)備使用期間需更換的零件數(shù),代表購買2臺設(shè)備的同時購買易損零件的個數(shù).(1)求的分布列;(2)以購買易損零件所需費用的期望為決策依據(jù),試問在和中,應(yīng)選哪一個?21.(12分)已知兩條直線,.設(shè)為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.22.(10分)設(shè)數(shù)列的前項和為,為等比數(shù)列,且,(1)求數(shù)列和的通項公式;(2)設(shè),求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關(guān)鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.2、A【解析】根據(jù)給定條件構(gòu)造函數(shù),再探討其單調(diào)性并借助單調(diào)性判斷作答.【詳解】令函數(shù),求導(dǎo)得,當(dāng)時,,于是得在上單調(diào)遞減,而,則,即,所以,故選:A3、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A4、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B5、D【解析】求得,根據(jù)的面積列方程,由此求得,進(jìn)而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關(guān)計算,屬于中檔題.6、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.7、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.8、A【解析】將圓的方程配成標(biāo)準(zhǔn)方程,可求得圓心坐標(biāo).【詳解】圓的標(biāo)準(zhǔn)方程為,圓心的坐標(biāo)為.故選:A.9、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點的最短弦長,再結(jié)合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A10、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故,對三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于常考題型.11、B【解析】根據(jù)圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設(shè)大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數(shù)學(xué)在生活中的應(yīng)用,屬于基礎(chǔ)題12、C【解析】根據(jù)空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.14、【解析】根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結(jié)合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應(yīng)用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經(jīng)過條件直接得到a,c的值,這時可將或視為一個整體,把關(guān)系式轉(zhuǎn)化為關(guān)于或的方程,從而得到離心率的值.15、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.16、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】(1)求導(dǎo)得,在分,兩種情況討論求解即可;(2)根據(jù)題意將問題轉(zhuǎn)化為對恒成立,進(jìn)而構(gòu)造函數(shù),求解函數(shù)最值即可.【小問1詳解】解:函數(shù)的定義域為,當(dāng)時,令,得,令,得;當(dāng)時,令,得,令,得綜上,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減【小問2詳解】解:由(1)知,函數(shù)在上單調(diào)遞增,則,所以對恒成立等價于對恒成立設(shè)函數(shù),則,設(shè),則,則在上單調(diào)遞減,所以,則,所以在上單調(diào)遞減,所以;故,即的取值范圍是18、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質(zhì)可得解.詳解:(1)當(dāng)時,所以,所以曲線在點處的切線方程為.(2)因為函數(shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調(diào)遞減,則,得實數(shù)的取值范圍為點睛:導(dǎo)數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立;(3)若恒成立,可轉(zhuǎn)化為(需在同一處取得最值).19、(1);詳見解析;(2)5.【解析】(1)由題可得,由條件可依次求各項,即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進(jìn)而可得,結(jié)合條件即求.【小問1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項,公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當(dāng)時,,成立;假設(shè)時,等式成立,即,則時,,∴,∴當(dāng)時,等式也成立,∴,∴數(shù)列是首項,公差為的等差數(shù)列.【小問2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又?jǐn)?shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點睛】關(guān)鍵點點睛:第一問的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問求出,,即得.20、(1)答案見解析;(2)應(yīng)選擇.【解析】(1)由每臺設(shè)備需更換零件個數(shù)的分布列求出的所有可能值,并求出對應(yīng)的概率即可得解.(2)分別求出和時購買零件所需費用的期望,比較大小即可作答.【小問1詳解】的可能取值為10,11,12,13,14,,,,,,則的分布列為:10111213140.090.30.370.20.04【小問2詳解】記為當(dāng)時購買零件所需費用,,,,,元,記為當(dāng)時購買零件所需費用,,,,元,顯然,所以應(yīng)選擇.21、(1);(2).【解析】(1)由兩直線平行可得出關(guān)于的等式,求出的值,再代入兩直線方程,驗證兩直線是否平行,由此可得出結(jié)果;(2)分析可知,求出直線在軸、軸上的截距,結(jié)合已知條件可得出關(guān)于的等式,即可解得的值.【小問1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論