版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
昭通市重點中學2024屆高二上數學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的函數的導函數為,若對任意實數,有,且為奇函數,則不等式解集是A. B.C. D.2.已知定義在上的函數滿足:,且,則的解集為()A. B.C. D.3.已知拋物線C:,則過拋物線C的焦點,弦長為整數且不超過2022的直線的條數是()A.4037 B.4044C.2019 D.20224.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標準方程為()A. B.C. D.5.直線與圓相交于點,點是坐標原點,若是正三角形,則實數的值為A.1 B.-1C. D.6.函數直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.7.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個8.直線y=x+1與圓x2+y2=1的位置關系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離9.設橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.10.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.712.學校為了解學生在課外讀物方面的支出情況,抽取了n位同學進行調查,結果顯示這些同學的支出都在(單位:元)內,其中支出在(單位:元)內的同學有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.390二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的通項公式為,記數列的前項和為,則__________,的最小值為__________14.在的展開式中項的系數為______.(結果用數值表示)15.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______16.已知銳角的內角,,的對邊分別為,,,且.若,則外接圓面積的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數、頻率分別是多少?(2)估計這次環(huán)保知識競賽的眾數、中位數、平均數是多少?18.(12分)已知數列滿足各項均不為0,,且,.(1)證明:為等差數列,并求的通項公式;(2)令,,求.19.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.20.(12分)已知函數,其中a為正數(1)討論單調性;(2)求證:21.(12分)已知函數f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.22.(10分)二項式展開式中第五項的二項式系數是第三項系數的4倍.求:(1);(2)展開式中的所有的有理項.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設.由,得,故函數在上單調遞減.由為奇函數,所以.不等式等價于,即,結合函數的單調性可得,從而不等式的解集為,故答案為B.考點:利用導數研究函數的單調性.【方法點晴】本題考查了導數的綜合應用及函數的性質的應用,構造函數的思想,閱讀分析問題的能力,屬于中檔題.常見的構造思想是使含有導數的不等式一邊變?yōu)?,即得,當是形如時構造;當是時構造,在本題中令,(),從而求導,從而可判斷單調遞減,從而可得到不等式的解集2、A【解析】令,利用導數可判斷其單調性,從而可解不等式.【詳解】設,則,故為上的增函數,而可化為即,故即,所以不等式的解集為,故選:A.3、A【解析】根據已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數且不超過2022的直線的條數是故選:A4、D【解析】設橢圓的方程為,根據題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點在軸上,可設橢圓的方程為,因為橢圓C的離心率為,可得,又由,即,解得,又因為橢圓的面積為,可得,即,聯立方程組,解答,所以橢圓方程為.故選:D.5、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C6、C【解析】先求出AB坐標,表示出,規(guī)定函數,其中,利用導數求最小值.【詳解】聯立解得可得點.聯立解得可得點.由題意可得解得,令,其中,∴.∴函數單調遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數法:表示出距離,利用函數求最值.7、B【解析】構造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉,轉一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.8、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關系是相交但直線不過圓心故選B考點:直線與圓的位置關系9、D【解析】詳解】由題意可設|PF2|=m,結合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.10、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設,設,求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設,由在長方體中,,,設,可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.11、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.12、A【解析】根據小矩形的面積之和,算出位于10~30的2組數的頻率之和為0.33,從而得到位于30~50的數據的頻率之和為1-0.33=0.67,再由頻率計算公式即可算出樣本容量的值.【詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據的頻率分別為0.1、0.23可得位于10~30的前3組數的頻率之和為0.1+0.23=0.33由此可得位于30~50數據的頻率之和為1-0.33=0.67∵支出在[30,50)的同學有67人,即位于30~50的頻數為67,∴根據頻率計算公式,可得解之得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先確定的正負,分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結合一次函數和對勾函數單調性得到最小值,綜合可得最終結果.【詳解】令,解得:,則當時,;當時,;當時,;當時,;;,當時,;當時,在上單調遞減,在上單調遞增,又,,,當時,;綜上所述:.故答案為:;.【點睛】關鍵點點睛:本題考查含絕對值的數列前項和的求解問題,解題關鍵是能夠確定數列的變號項,從而以變號項為分類基準進行分類討論得到數列的前項和;求解數列中的最值問題的關鍵是能夠利用數列與函數的關系,結合函數單調性和來進行求解.14、【解析】先求解出該二項式展開式的通項,然后求解出滿足題意的項數值,帶入通項即可求解出展開式的系數.【詳解】展開式通項為,由題意,令,解得,,所以項的系數為.故答案為:.15、4cm【解析】根據圓面積公式算出截面圓的半徑,利用球的截面圓性質與勾股定理算出球心到截面的距離【詳解】解:設截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據球的截面圓性質,可得截面到球心的距離為故答案為:4cm【點睛】本題主要考查了球的截面圓性質、勾股定理等知識,考查了空間想象能力,屬于基礎題16、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范圍,再利用正弦定理求出外接圓的半徑,即可求出外接圓的面積;【詳解】解:因為,所以,解得或(舍去).又為銳角三角形,所以.因為,當且僅當時等號成立,所以.外接圓的半徑,故外接圓面積的最小值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)0.25,15;(2)眾數為74.5,中位數為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數公式求解;(2)利用頻率分布直方圖的公式求眾數、中位數、平均數.【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數最多,則眾數為74.5,左邊三個矩形的面積和為0.4,左邊四個矩形的面積和為0.7,所以中位數在第4個矩形中,設中位數為,所以中位數為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1)證明見解析,,(2)【解析】(1)根據題意,結合遞推公式,易知,即可求證;(2)根據題意,結合錯位相減法,即可求解.【小問1詳解】∵,∴,,∴等差數列,首項為,公差為3.∴,即,.【小問2詳解】根據題意,得,,①,②①-②得,故.19、(1)證明見解析(2)【解析】(1)取的中點,連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結論,(2)過點作于,以為原點,建立空間直角坐標系,如圖所示,設,先根據直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結果【小問1詳解】證明:取的中點,連接,因為AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因為平面,平面,所以,因為,所以平面,因為平面,所以平面平面,【小問2詳解】過點作于,以為原點,建立空間直角坐標系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設因為平面,所以所以,設平面的法向量為,則,令,則,因為直線BC與平面PCD所成角的正弦值為,所以,解得,所以,,設平面的法向量為,因為,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為20、(1)答案見解析(2)證明見解析【解析】(1)求解函數的導函數,并且求的兩個根,然后分類討論,和三種情況下對應的單調性;(2)令,通過二次求導法,判斷函數的單調性與最小值,設的零點為,求出取值范圍,最后將轉化為的對勾函數并求解最小值,即可證明出不等式.【小問1詳解】函數的定義域為∵令得∵,∴,得或①當,即時,時,或;時,.∴在上單調遞增,在上單調遞減,在上單調遞增②當,即時,時,或;時,.∴在上單調遞增,在上單調遞減,在上單調遞增③當,即時,∴在上單調遞增綜上所述:當時,在和上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增【小問2詳解】令,()∴,令∴,∴在上單調遞增又∵,,∴使得,即(*)∴當時,,∴,∴單調遞減∴當時,,∴,∴單調遞增∴,()由(*)式可知:,∴,∴∵,∴函數單調遞減∴,∴∴【點睛】求解本題的關鍵是利用二次求導法,通過虛設零點,求解原函數的單調性與最小值,并通過最小值的取值范圍證明不等式.21、(1)(2)【解析】(1)由于在點處有極小值,所以,從而可求出、的值;(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年勞務派遣協(xié)議履行義務
- 2025年文化產業(yè)發(fā)展項目物資采購與運營合同3篇
- 2025年投資咨詢顧問綜合解決方案合作協(xié)議3篇
- 2025年加盟連鎖合作合同
- 2025年地基勘察協(xié)議
- 二零二五版智能自動化生產線合作建設合同3篇
- 2025年度爐渣環(huán)保處理與采購質量保障合同4篇
- 2025年綠色環(huán)保型水泥沙石供應商合作合同范本3篇
- 2025年物流倉儲行車維修承包合同協(xié)議3篇
- 二零二五版第3章電子合同電子檔案存儲標準3篇
- 醫(yī)院骨科2025年帶教計劃(2篇)
- 環(huán)境保護應急管理制度執(zhí)行細則
- 2024-2030年中國通航飛行服務站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報告
- 機械制造企業(yè)風險分級管控手冊
- 地系梁工程施工方案
- 藏文基礎-教你輕輕松松學藏語(西藏大學)知到智慧樹章節(jié)答案
- 2024電子商務平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 英語 含答案
- 醫(yī)學教程 常見體表腫瘤與腫塊課件
- 內分泌系統(tǒng)異常與虛勞病關系
- 智聯招聘在線測評題
評論
0/150
提交評論