版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古自治區(qū)包頭市二中2023屆高三《天府大聯(lián)考》(一)數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.2.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.3.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱4.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.7.函數(shù)的部分圖象大致是()A. B.C. D.8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為則()A. B.C. D.9.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.10.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.211.函數(shù)的部分圖像大致為()A. B.C. D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.在中,角的平分線交于,,,則面積的最大值為__________.15.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應(yīng)該為__________.16.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,.求矩陣;求矩陣的特征值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.19.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實數(shù)的取值范圍.20.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.21.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標(biāo)方程與點的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(異于原點),求的面積.22.(10分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應(yīng)地,高校在招生時可對特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級有學(xué)生1200人,現(xiàn)從中隨機抽取40人進行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當(dāng)且僅當(dāng)一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學(xué)高一年級現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學(xué)高一新生中隨機抽取3人,設(shè)具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時,設(shè)切點橫坐標(biāo)為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計算能力、觀察能力,屬于難題.2、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當(dāng)時,,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.3、C【解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.4、D【解析】
設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.5、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.6、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.7、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當(dāng)時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負(fù),以及單調(diào)性,極值點等排除選項.8、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復(fù)數(shù)對應(yīng)點坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.10、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當(dāng)時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.12、C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時,取得最小值為.故答案為:【點睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.16、1【解析】
由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結(jié)果,需要掌握解題方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;,.【解析】
由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于??碱}.18、(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時,,此時不等式無解;當(dāng)時,,由得;當(dāng)時,,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時,;當(dāng)時,,所以當(dāng)時,,由得或,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當(dāng)時,,遞增,當(dāng)時,,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當(dāng)時,,遞減,當(dāng)時,,遞增.,所以,①當(dāng);②當(dāng)時,設(shè),遞增,,所以.綜上,.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強調(diào)一點,處理恒成立問題時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.20、(1)見解析;(2).【解析】
(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.21、(1)極坐標(biāo)方程為,點的極坐標(biāo)為(2)【解析】
(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點的極坐標(biāo),利用計算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.(2)由(1),得點的極坐標(biāo)為,由直線過原點且傾斜角為,知點的極坐標(biāo)為,.【點睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運算能力,是一道基礎(chǔ)題.22、(1)不需調(diào)整(2)列聯(lián)表見解析;有的把握判斷學(xué)生“選擇化學(xué)科目”與“選
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五個人向金融機構(gòu)借款合同終止條件合同模板2篇
- 二零二五年度個人現(xiàn)代農(nóng)業(yè)項目股份轉(zhuǎn)讓合同范本2篇
- 二零二五版宣傳費用結(jié)算與審計合同范本2篇
- 2025年度個人跨境電商代理合同2篇
- 二零二五年度個人貨車貨運車輛維護合同模板3篇
- 二零二五年度公共衛(wèi)生間設(shè)計與施工合同4篇
- 二零二五年度工程車輛司機聘用安全協(xié)議3篇
- 二零二五年度個人與娛樂公司演出代理服務(wù)協(xié)議3篇
- 二零二五年度旅游度假區(qū)土地使用權(quán)作價入股投資合同3篇
- 規(guī)范室內(nèi)裝修合同范本
- 道路瀝青工程施工方案
- 2025年度正規(guī)離婚協(xié)議書電子版下載服務(wù)
- 《田口方法的導(dǎo)入》課件
- 春節(jié)后安全生產(chǎn)開工第一課
- 2025光伏組件清洗合同
- 內(nèi)陸?zhàn)B殖與水產(chǎn)品市場營銷策略考核試卷
- 電力電纜工程施工組織設(shè)計
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 醫(yī)生給病人免責(zé)協(xié)議書(2篇)
- 票據(jù)業(yè)務(wù)居間合同模板
- 承包鋼板水泥庫合同范本(2篇)
評論
0/150
提交評論