版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年遼寧省阜新市海州高級(jí)中學(xué)下學(xué)期期中考高三試卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.22.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.3.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.4.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.5.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-16.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.7.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.8.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.9.函數(shù)且的圖象是()A. B.C. D.10.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件11.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.712.已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實(shí)數(shù),向量,,且,則____________.14.過(guò)動(dòng)點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.15.從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為_(kāi)_________.16.若、滿足約束條件,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),若直線與曲線相交于、兩點(diǎn),求的值18.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.19.(12分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問(wèn)小明上學(xué)的路線有多少種不同可能?(2)在保證通過(guò)紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過(guò)處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開(kāi)哪條路線?20.(12分)過(guò)點(diǎn)P(-4,0)的動(dòng)直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時(shí),.(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍.21.(12分)2019年是中華人民共和國(guó)成立70周年.為了讓人民了解建國(guó)70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.22.(10分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn)且,,,.求證:平面平面以;求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意或4,則,故選B.2、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.3、C【解析】
函數(shù)的定義域應(yīng)滿足故選C.4、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.5、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.6、B【解析】
依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過(guò),再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線過(guò)定點(diǎn),當(dāng)時(shí),不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問(wèn)題,分類討論與數(shù)形結(jié)合思想,屬于中檔題7、D【解析】
利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問(wèn)題化繁為簡(jiǎn),難度較易.8、D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)椋?,是偶函?shù),關(guān)于軸對(duì)稱,排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.10、B【解析】
由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.11、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.12、C【解析】
不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
由,,且,得,解得,則,則.14、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.15、【解析】
基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,求解時(shí)注意辨別概率的模型.16、【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點(diǎn),平移直線,當(dāng)直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值問(wèn)題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)的普通方程為,的直角坐標(biāo)方程為;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標(biāo)方程化為普通方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),并設(shè)點(diǎn)、所對(duì)應(yīng)的參數(shù)分別為、,利用韋達(dá)定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,得,則,設(shè)、兩點(diǎn)對(duì)應(yīng)參數(shù)分別為、,,,,,.【點(diǎn)睛】本題考查了參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線參數(shù)方程幾何意義的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1);(2)①可能是2件;②詳見(jiàn)解析【解析】
(1)由一件手工藝品質(zhì)量為B級(jí)的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級(jí)的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級(jí)的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級(jí)的概率為,一件手工藝品質(zhì)量為B級(jí)的概率為,一件手工藝品質(zhì)量為C級(jí)的概率為,一件手工藝品質(zhì)量為D級(jí)的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.19、(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過(guò)處,共有4條路線,即,,,,分別對(duì)4條路線進(jìn)行分析計(jì)算概率;(3)分別對(duì)小明上學(xué)的6條路線進(jìn)行分析求均值,均值越大的應(yīng)避免.【詳解】(1)路途中可以看成必須走過(guò)2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經(jīng)過(guò)處,共有4條路線:①當(dāng)走時(shí),全程不等紅綠燈的概率;②當(dāng)走時(shí),全程不等紅綠燈的概率;③當(dāng)走時(shí),全程不等紅綠燈的概率;④當(dāng)走時(shí),全程不等紅綠燈的概率.所以途中恰好經(jīng)過(guò)處,且全程不等信號(hào)燈的概率.(3)設(shè)以下第條的路線等信號(hào)燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學(xué)的最佳路線為;應(yīng)盡量避開(kāi).【點(diǎn)睛】本題考查概率在實(shí)際生活中的綜合應(yīng)用問(wèn)題,考查學(xué)生邏輯推理與運(yùn)算能力,是一道有一定難度的題.20、;【解析】
根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線C的方程;設(shè),的中點(diǎn)為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設(shè),由韋達(dá)定理可得,,因?yàn)?,所以,解得,所以拋物線C的方程為;設(shè),的中點(diǎn)為,由,消去可得,所以判別式,解得或,由韋達(dá)定理可得,,所以的中垂線方程為,令則,因?yàn)榛?所以即為所求.【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的位置關(guān)系,考查向量知識(shí)的運(yùn)用;考查學(xué)生分析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 陶藝課程設(shè)計(jì)思路
- 音樂(lè)與影視同步課程設(shè)計(jì)
- 二零二五版辦公大樓智能化會(huì)議系統(tǒng)建設(shè)與維護(hù)協(xié)議2篇
- 2024年心理咨詢師之心理咨詢師基礎(chǔ)知識(shí)題庫(kù)帶答案(輕巧奪冠)
- 2025年度個(gè)人增強(qiáng)現(xiàn)實(shí)技術(shù)入股協(xié)議3篇
- 造價(jià)課程設(shè)計(jì)江蘇版
- 年度玻璃用助劑市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 年度自動(dòng)造型線產(chǎn)業(yè)分析報(bào)告
- 專項(xiàng)施工方案的審核人
- 2025年度特種車輛轉(zhuǎn)讓及配套設(shè)備安裝服務(wù)合同3篇
- 《腎上腺腫瘤》課件
- 2024-2030年中國(guó)典當(dāng)行業(yè)發(fā)展前景預(yù)測(cè)及融資策略分析報(bào)告
- 《乘用車越野性能主觀評(píng)價(jià)方法》
- 幼師個(gè)人成長(zhǎng)發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語(yǔ)試題及解答參考
- 動(dòng)物醫(yī)學(xué)類專業(yè)生涯發(fā)展展示
- 批發(fā)面包采購(gòu)合同范本
- 乘風(fēng)化麟 蛇我其誰(shuí) 2025XX集團(tuán)年終總結(jié)暨頒獎(jiǎng)盛典
- 2024年大數(shù)據(jù)分析公司與中國(guó)政府合作協(xié)議
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
- 中醫(yī)基礎(chǔ)理論課件
評(píng)論
0/150
提交評(píng)論