版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市康德卷2023年高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點的坐標(biāo)來描述.設(shè)曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應(yīng)點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應(yīng)點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.2.若,則與的大小關(guān)系是()A. B.C. D.不能確定3.設(shè)數(shù)列的前項和為,若,,,則、、、中,最大的是()A. B.C. D.4.已知圓過點,,且圓心在軸上,則圓的方程是()A. B.C. D.5.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.6.已知直線過點,,則直線的方程為()A. B.C. D.7.若雙曲線離心率為,過點,則該雙曲線的方程為()A. B.C. D.8.已知,,則下列結(jié)論一定成立的是()A. B.C. D.9.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題10.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內(nèi)層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.11.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標(biāo)為()A. B.C.6 D.712.在等比數(shù)列中,,則的公比為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=8x的焦點為F,直線l過點F與拋物線C交于A,B兩點,以F為圓心的圓交線段AB于C,D兩點(從上到下依次為A,C,D,B),若,則該圓的半徑r的取值范圍是____________.14.圓被直線所截得弦的最短長度為___________.15.設(shè)O為坐標(biāo)原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內(nèi)切圓的半徑為,則C的離心率為____________16.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結(jié)論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結(jié)論正確的有______.(填上正確結(jié)論的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.18.(12分)已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時,直線l被圓C所截得的弦長最?。空埱蟪鲈撟钚≈?9.(12分)我國是世界最大的棉花消費國、第二大棉花生產(chǎn)國,其中,新疆棉產(chǎn)量約占國內(nèi)產(chǎn)量的87%,消費量約占國內(nèi)消費量的67%.新疆棉的品質(zhì)高:纖維柔長,潔白光澤,彈性良好,各項質(zhì)量指標(biāo)均超國家標(biāo)準(zhǔn).尤其是被授予“中國彩棉之鄉(xiāng)”稱號的新疆建設(shè)兵團一四八團生產(chǎn)的天然彩棉,株型緊湊,吐絮集中,品質(zhì)優(yōu)良,色澤純正、艷麗,手感柔軟,適合中高檔紡織.新疆彩棉根據(jù)色澤、手感、纖維長度等評分指標(biāo)打分,得分在區(qū)間內(nèi)分別對應(yīng)四級、三級、二級、一級.某經(jīng)銷商從采購的新蚯彩棉中隨機抽取20包(每包1kg),得分?jǐn)?shù)據(jù)如圖(1)試統(tǒng)計各等級數(shù)量,并估計各等級在該批彩棉中所占比例;(2)用樣本估計總體,經(jīng)銷商參考以下兩種銷售方案進行銷售:方案1:不分等級賣出,單價為1.79萬元/噸;方案2:分等級賣出,不同等級的新疆彩棉售價如下表所示:等級一級二級三級四級售價(萬元/噸)若從經(jīng)銷商老板的角度考慮,采用哪種方案較好?并說明理由20.(12分)已知是等差數(shù)列,是等比數(shù)列,且,,,.(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和.21.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點到直線的距離為,求實數(shù)k的取值范圍22.(10分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,是數(shù)列的前項和,求使成立的最大的正整數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)單位圓上一點為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.2、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B3、C【解析】求出的表達式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時,最大.故選:C.4、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點,的坐標(biāo)代入圓的方程即可求出答案.【詳解】因為圓的圓心在軸上,所以設(shè)圓的方程為,因為點,在圓上,所以,解得,所以圓的方程是.故選:B.5、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標(biāo)為點坐標(biāo)為坐標(biāo)為點坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.6、C【解析】根據(jù)兩點的坐標(biāo)和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C7、B【解析】分析可得,再將點代入雙曲線的方程,求出的值,即可得出雙曲線的標(biāo)準(zhǔn)方程.【詳解】,則,,則雙曲線的方程為,將點的坐標(biāo)代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B8、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.9、D【解析】因為非p為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.10、B【解析】分別設(shè)內(nèi)外層橢圓方程為、,進而設(shè)切線、分別為、,聯(lián)立方程組整理并結(jié)合求、關(guān)于a、b、m的關(guān)系式,再結(jié)合已知得到a、b的齊次方程求離心率即可.【詳解】若內(nèi)層橢圓方程為,由離心率相同,可設(shè)外層橢圓方程為,∴,設(shè)切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關(guān)鍵點點睛:根據(jù)內(nèi)外橢圓的離心率相同設(shè)橢圓方程,并寫出切線方程,聯(lián)立方程結(jié)合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.11、D【解析】設(shè)出P的縱坐標(biāo),利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準(zhǔn)線方程為,P點到拋物線的焦點的距離等于到準(zhǔn)線的距離,設(shè)點縱坐標(biāo)為,則,解得:.故選:D12、D【解析】利用等比數(shù)列的性質(zhì)把方程都變成和有關(guān)的式子后進行求解.【詳解】由等比數(shù)列的等比中項性質(zhì)可得,又,所以,因,所以,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出直線的方程為,代入拋物線方程,消去,可得關(guān)于的二次方程,運用韋達定理及拋物線的定義,化簡計算可求解.【詳解】拋物線C:y2=8x的焦點為,設(shè)以為圓心的圓的半徑為,可知,,設(shè),直線的方程為,則,代入拋物線方程,可得,即有,,,,即,所以.故答案為:14、【解析】首先確定直線所過定點;由圓的方程可確定圓心和半徑,進而求得圓心到的距離,由此可知所求最短長度為.【詳解】由得:,直線恒過點;,在圓內(nèi);又圓的圓心為,半徑,圓心到點的距離,所截得弦的最短長度為.故答案為:.15、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.16、②③【解析】對①:由連接,,由平面,即可判斷;對③:設(shè)到平面的距離為,則,所以即可判斷;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),利用向量法求出與,比較大小即可判斷;對②:設(shè)與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設(shè)到平面的距離為,則,所以,故③正確;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),則,0,,,0,,,,,,,,所以,,,,,,設(shè)平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設(shè)平面的法向量為,則,即,取,則,設(shè)與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即18、(1)詳見解析(2)m為-時,截得的弦長最小,最小值為2【解析】(1)將直線l變形,可知直線l過定點,證明定點在圓內(nèi)部;(2)利用垂徑定理和弦長公式可得.【詳解】(1)證明:直線l變形為m(x-y+1)+(3x-2y)=0令解得,如圖所示,故動直線l恒過定點A(2,3)而|AC|==<3(半徑)∴點A在圓內(nèi),故無論m取何值,直線l與圓C總相交(2)解:由平面幾何知識知,弦心距越大,弦長越小,即當(dāng)AC垂直直線l時,弦長最小,此時kl·kAC=-1,即,∴m=-最小值為故m為-時,直線l被圓C所截得的弦長最小,最小值為2【點睛】考查直線過定點、點與圓的位置關(guān)系以及弦長問題,解題的關(guān)鍵是直線系形式的轉(zhuǎn)化.19、(1)答案見解析;(2)答案、理由見解析【解析】(1)根據(jù)莖葉圖計算出數(shù)量以及比例.(2)計算出方案的彩棉售價平均值,由此作出決策.【詳解】(1)得分在(0,25]內(nèi)的有19,21,共2個,所以四緩彩棉在該批彩棉中所占比例為;得分在(25,50]內(nèi)的有27,31,36,42,45,48,共6個,所以三級彩棉在該批彩棉中所占比例為;得分在(50,75]內(nèi)的有51,51,58,63,65,68,73,共7個,所以二級彩棉在該批彩棉中所占比例為;得分在(75,100]內(nèi)的有76,79,83,85,92,共5個,所以一級彩棉在該批彩棉中所占比例(2)解答一:選用方案2,理由如下:方案1:不分等級賣出,單價為1.79萬元/噸;設(shè)方案2的彩棉售價平均值為萬元/噸,則因為,所以從經(jīng)銷商老板角度考慮,采用方案2時銷售利潤比較大,應(yīng)選方案2解答二:選用方案1,理由如下:方案1:不分等級賣出,單價為1.79萬元/噸;設(shè)方案2的彩棉售價平均值為則,因為,但(萬元)差別較小所以從經(jīng)銷商老板后期對彩棉分類的人力資源和時間成本角度考慮,采用方案1比較好20、(1)(2)【解析】(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,運用通項公式可得,,進而得到所求通項公式;(2)求得,再由數(shù)列的求和方法:分組求和,運用等差數(shù)列和等比數(shù)列的求和公式,計算即可得到所求和.【小問1詳解】解:(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,由,,可得,;即有,,則,則;【小問2詳解】解:,則數(shù)列的前n項和為.21、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防器材智能化改造升級服務(wù)合同2篇
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓(xùn)練合同范本大全:企業(yè)團隊凝聚力提升計劃3篇
- 二零二四年度2024年三人健身產(chǎn)業(yè)合作合同6篇
- 2025年洗車場車輛停放管理及承包合同3篇
- 2025版航空航天專用鋁合金采購合同書4篇
- 二零二四年云服務(wù)器租賃與智能運維合同3篇
- 個人汽車租賃合同樣本 2024年版版B版
- 2025年度臨時臨時設(shè)施租賃合同標(biāo)準(zhǔn)范本4篇
- 2025年無償使用政府辦公樓場地舉辦會議合同范本3篇
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風(fēng)險防控PPT
- 充電樁采購安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 保險行業(yè)加強清廉文化建設(shè)
- Hive數(shù)據(jù)倉庫技術(shù)與應(yīng)用
- 數(shù)字的秘密生活:最有趣的50個數(shù)學(xué)故事
評論
0/150
提交評論