版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中2024屆數(shù)學高二上期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}2.已知,,,則的大小關系是()A. B.C. D.3.已知實數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.204.已知雙曲線,且三個數(shù)1,,9成等比數(shù)列,則下列結論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長為5.某汽車制造廠分別從A,B兩類輪胎中各隨機抽取了6個進行測試,下面列出了每一個輪胎行駛的最遠里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據(jù)以上數(shù)據(jù),下列說法正確的是()A.A類輪胎行駛的最遠里程的眾數(shù)小于B類輪胎行駛的最遠里程的眾數(shù)B.A類輪胎行駛的最遠里程的極差等于B類輪胎行駛的最遠里程的極差C.A類輪胎行駛的最遠里程的平均數(shù)大于B類輪胎行駛的最遠里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定6.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.7.設變量滿足約束條件:,則的最小值()A. B.C. D.8.若復數(shù)的模為2,則的最大值為()A. B.C. D.9.直線的斜率是()A. B.C. D.10.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.11.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.12.已知中,內(nèi)角,,的對邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點到漸近線的距離為__________.14.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.15.一個高為2的圓柱,底面周長為2,該圓柱的表面積為.16.已知點在圓上,點在圓上,則的最小值是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設銳角三角形ABC的內(nèi)角A、B、C的對邊分別為a、b、c,.(1)求B的大?。?)若,,求b.18.(12分)已知數(shù)列的前項和,數(shù)列是各項均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.20.(12分)記數(shù)列的前n項和為,已知點在函數(shù)的圖像上(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前9項和21.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值22.(10分)已知函數(shù)(a是常數(shù)).(1)當時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎題.2、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:3、A【解析】根據(jù)約束條件作出可行域,再將目標函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點,經(jīng)過時,,解得,所以此時取得最大值,即有最大值,即故選:A.4、D【解析】先求得的值,然后根據(jù)雙曲線的知識對選項進行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數(shù)列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項錯誤.漸近線方程為,B選項錯誤.離心率,C選項錯誤.虛軸長,D選項正確.故選:D5、D【解析】根據(jù)眾數(shù)、極差、平均數(shù)和方差的定義以及計算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠里程的眾數(shù)為99,B類輪胎行駛的最遠里程的眾數(shù)為95,選項A錯誤;對B:A類輪胎行駛的最遠里程的極差為13,B類輪胎行駛的最遠里程的極差為14,選項B錯誤對C:A類輪胎行駛的最遠里程的平均數(shù)為,B類輪胎行駛的最遠里程的平均數(shù)為,選項C錯誤對D:A類輪胎行駛的最遠里程的方差為,B類輪胎行駛的最遠里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項D正確故選:D.6、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.7、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當經(jīng)過A時,的最小值為-8,故選D.8、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,設切線方程為,則,解得,所以的最大值為,故選:A9、D【解析】把直線方程化為斜截式即得【詳解】直線方程的斜截式為,斜率為故選:D10、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.11、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點睛】結論點睛:本題考查不等式恒成立問題,解題關鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時要注意全稱量詞與存在量詞對題意的影響.等價轉(zhuǎn)化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于12、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.3【解析】由漸近線方程知,結合雙曲線參數(shù)關系及離心率的定義求雙曲線的離心率,由已知可得右焦點為,應用點線距離公式求距離.【詳解】由題設,,則,當時,,則雙曲線為,故右焦點為,所以右焦點到漸近線的距離為.故答案為:,3.14、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.15、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.16、3-5【解析】因為點在圓上,點在圓上,故兩圓的圓心分別為半徑分別為和兩圓的圓心距為,故兩圓相離,則最小值為,故答案為.考點:1、圓的方程及圓的幾何性質(zhì);2、兩點間的距離公式及最值問題.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、兩點間的距離公式及最值問題的應用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用圓的幾何性質(zhì),將的最小值轉(zhuǎn)化兩圓心的距離減半徑解答的.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由正弦定理,可得,進而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得,因為,所以,又因為B為銳角,所以(2)由余弦定理,可得,解得【點睛】本題考查正弦、余弦定理在解三角形中的運用,考查學生的計算求解能力,屬于基礎題.18、(1),;(2).【解析】(1)利用求出數(shù)列的通項,再求出等比數(shù)列的公比即得解;(2)求出,再利用錯位相減法求解.【小問1詳解】解:,.當時,,適合..設等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項公式和等比中項,可得,再根據(jù)等差數(shù)列的前項和公式,即可求出,,進而求出結果;(2)由(1)得,結合等比數(shù)列前項和公式和對數(shù)運算性質(zhì),利用分組求和,即可求出結果.【小問1詳解】解:設的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.20、(1)(2)【解析】(1)利用的關系可求.(2)利用裂項相消法可求數(shù)列的前9項和【小問1詳解】由題意知當時,;當時,,適合上式所以【小問2詳解】則21、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結合基本不等式求解【小問1詳解】由己知可得,由,解得:,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024天津旅游度假區(qū)土地承包使用權出租協(xié)議3篇
- 2024-2030年中國多層押出與切斷機商業(yè)計劃書
- 2024-2030年中國垃圾焚燒發(fā)電行業(yè)當前經(jīng)濟形勢及投資建議研究報告
- 2024-2030年中國噴霧通風玻璃鋼冷卻塔項目投資風險分析報告
- 2024年戰(zhàn)略合作:全方位市場營銷協(xié)議3篇
- 2024年度工程欠款結算付款合同3篇
- 2024年度國有企業(yè)內(nèi)部基礎設施建設無償借款合同3篇
- 2024年度健康食品原材料研發(fā)與生產(chǎn)合作合同3篇
- 微專題鋰離子電池-2024高考化學一輪考點擊破
- 馬鞍山學院《社會組織與社會治理》2023-2024學年第一學期期末試卷
- 落地式卸料平臺技術交底
- 螺旋槳的幾何形體及制造工藝
- 舞臺機械保養(yǎng)說明
- 市政工程竣工驗收資料
- 鋼結構圍擋工程技術標(共30頁)
- 指導培養(yǎng)青年教師計劃(歷史)
- 《化學實驗室安全與環(huán)保手冊》
- 消防安全網(wǎng)格化管理表格樣式
- 高考復習之——詩詞鑒賞-景與情關系
- 重慶市高等教育學校收費標準一覽表(公辦)
- 閃光焊及缺陷
評論
0/150
提交評論