




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
寧夏銀川二十四中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)殚_區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點(diǎn)()A.個(gè) B.個(gè)C.個(gè) D.個(gè)2.圓關(guān)于直線對(duì)稱圓的標(biāo)準(zhǔn)方程是()A. B.C. D.3.橢圓的左、右焦點(diǎn)分別為,過焦點(diǎn)的傾斜角為直線交橢圓于兩點(diǎn),弦長,若三角形的內(nèi)切圓的面積為,則橢圓的離心率為()A. B.C. D.4.已知數(shù)列中,其前項(xiàng)和為,且滿足,數(shù)列的前項(xiàng)和為,若對(duì)恒成立,則實(shí)數(shù)的值可以是()A. B.2C.3 D.5.已知P是直線上的動(dòng)點(diǎn),PA,PB是圓的切線,A,B為切點(diǎn),C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.6.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.367.已知拋物線:的焦點(diǎn)為F,準(zhǔn)線l上有兩點(diǎn)A,B,若為等腰直角三角形且面積為8,則拋物線C的標(biāo)準(zhǔn)方程是()A. B.C.或 D.8.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.79.已知雙曲線的左右焦點(diǎn)分別為、,過點(diǎn)的直線交雙曲線右支于A、B兩點(diǎn),若是等腰三角形,且,則的周長為()A. B.C. D.10.已知斜率為1的直線l過橢圓的右焦點(diǎn),交橢圓于A,B兩點(diǎn),則弦AB的長為()A. B.C. D.11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.412.已知函數(shù),則的值為()A. B.0C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,且滿足,,則___________.14.設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),則的最大值為_____15.已知向量,,若向量與向量平行,則實(shí)數(shù)______16.已知拋物線的焦點(diǎn)為F,若拋物線上一點(diǎn)P到x軸的距離為2,則|PF|的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),且存在兩個(gè)極值點(diǎn)、,其中.(1)求實(shí)數(shù)的取值范圍;(2)若恒成立,求最小值.18.(12分)已知數(shù)列滿足,,設(shè).(1)證明數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且拋物線上的點(diǎn)到焦點(diǎn)的距離是5.(1)求該拋物線的標(biāo)準(zhǔn)方程和的值;(2)若過點(diǎn)的直線與該拋物線交于,兩點(diǎn),求證:為定值.20.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.21.(12分)在平面直角坐標(biāo)系xOy中,曲線1與坐標(biāo)軸的交點(diǎn)都在圓C上(1)求圓C的方程;(2)設(shè)過點(diǎn)P(0,-2)的直線l與圓C交于A,B兩點(diǎn),且AB=2,求l的方程22.(10分)如圖,在正方體中,E為的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用極小值的定義判斷可得出結(jié)論.【詳解】由導(dǎo)函數(shù)在區(qū)間內(nèi)的圖象可知,函數(shù)在內(nèi)的圖象與軸有四個(gè)公共點(diǎn),在從左到右第一個(gè)點(diǎn)處導(dǎo)數(shù)左正右負(fù),在從左到右第二個(gè)點(diǎn)處導(dǎo)數(shù)左負(fù)右正,在從左到右第三個(gè)點(diǎn)處導(dǎo)數(shù)左正右正,在從左到右第四個(gè)點(diǎn)處導(dǎo)數(shù)左正右負(fù),所以函數(shù)在開區(qū)間內(nèi)的極小值點(diǎn)有個(gè),故選:A.2、D【解析】先根據(jù)圓的標(biāo)準(zhǔn)方程得到圓的圓心和半徑,求出圓心關(guān)于直線的對(duì)稱點(diǎn),進(jìn)而寫出圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)閳A的圓心為,半徑為,且關(guān)于直線對(duì)稱的點(diǎn)為,所以所求圓的圓心為、半徑為,即所求圓的標(biāo)準(zhǔn)方程為.故選:D.3、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點(diǎn)三角形及三角形內(nèi)切圓的性質(zhì),也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內(nèi)切圓的面積為,則半徑為1,由等面積可得,.故選:C.4、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因?yàn)閷?duì)恒成立,當(dāng)時(shí),則恒成立,當(dāng)時(shí),,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對(duì)恒成立,必須滿足.故選:D5、D【解析】由圓C的標(biāo)準(zhǔn)方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質(zhì)可得四邊形PACB面積等于,,故求解最小時(shí)即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當(dāng)最小時(shí),四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D6、C【解析】應(yīng)用等比中項(xiàng)的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C7、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當(dāng)時(shí),,解得;當(dāng)或時(shí),,解得,所以拋物線的方程是或.故選:C.8、B【解析】根據(jù)單位向量的定義和向量的乘法運(yùn)算計(jì)算即可.【詳解】因?yàn)橄蛄渴莾蓛纱怪钡膯挝幌蛄?,且所?故選:B9、A【解析】設(shè),.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設(shè),.則,,所以,因?yàn)槭堑妊切危遥?,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)雙曲線的定義求解是解題關(guān)鍵.10、C【解析】根據(jù)題意求得直線l的方程,設(shè),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理求得,再利用弦長公式即可得出答案.【詳解】由橢圓知,,所以,所以右焦點(diǎn)坐標(biāo)為,則直線的方程為,設(shè),聯(lián)立,消y得,,則,所以.即弦AB長為.故選:C.11、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.12、B【解析】求導(dǎo),代入,求出,進(jìn)而求出.【詳解】,則,即,解得:,故,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)時(shí),,可得,可得數(shù)列隔項(xiàng)成等比數(shù)列,即所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,分別求和,即可得解.【詳解】因?yàn)?,,所以,?dāng)時(shí),,∴,所以數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別是等比數(shù)列,所以.故答案為:.14、4【解析】設(shè),寫出、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當(dāng)時(shí),.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用向量數(shù)量積的坐標(biāo)表示及橢圓的有界性求最值.15、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.16、3【解析】先求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線為,因?yàn)閽佄锞€上一點(diǎn)P到x軸的距離為2,所以由拋物線的定義可得,故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)存在兩個(gè)極值點(diǎn),等價(jià)于其導(dǎo)函數(shù)有兩個(gè)相異零點(diǎn);(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個(gè)極值點(diǎn)、,且,關(guān)于的方程,即在內(nèi)有兩個(gè)不等實(shí)根,令,,即,,實(shí)數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個(gè)極值點(diǎn),由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題18、(1)證明見解析,;(2).【解析】(1)計(jì)算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式,進(jìn)而可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得.【小問1詳解】證明:對(duì)任意的,,則,則,因?yàn)?,則,,,以此類推可知,對(duì)任意的,,所以,,所以,數(shù)列是等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.19、(1),(2)證明見解析【解析】(1)根據(jù)點(diǎn)到焦點(diǎn)的距離等于5,利用拋物線的定義求得p,進(jìn)而得到拋物線方程,然后將點(diǎn)代入拋物線求解;(2)方法一:設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,利用數(shù)量積的運(yùn)算求解;方法二:根據(jù)直線過點(diǎn),分直線的斜率不存在時(shí),檢驗(yàn)即可;當(dāng)直線的斜率存在時(shí),設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,利用向量的數(shù)量積運(yùn)算求解.【小問1詳解】解:∵拋物線焦點(diǎn)在軸上,且過點(diǎn),∴設(shè)拋物線方程為,由拋物線定義知,點(diǎn)到焦點(diǎn)的距離等于5,即點(diǎn)到準(zhǔn)線的距離等于5,則,,∴拋物線方程為,又點(diǎn)在拋物線上,,,∴所求拋物線方程為,.【小問2詳解】方法一:由于直線過點(diǎn),可設(shè)直線方程為:,由得,設(shè),,則,,所以,即為定值;方法二:由于直線過點(diǎn),①當(dāng)直線的斜率不存在時(shí),易得直線的方程為,則由可得,,,所以;②當(dāng)直線的斜率存在時(shí)可設(shè)直線方程為:,由得,設(shè),,則,.所以,即為定值.綜上,為定值.20、(1),;(2)最大值為,最小值為【解析】(1)對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構(gòu)造一個(gè)關(guān)于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導(dǎo)數(shù)研究函數(shù)在上的單調(diào)性,比較極值和端點(diǎn)值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域?yàn)?,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調(diào)遞減單調(diào)遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點(diǎn)睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內(nèi)的最值問題,考查利用導(dǎo)函數(shù)研究函數(shù)在給定閉區(qū)間內(nèi)的單調(diào)性,以及通過比較極值和端點(diǎn)值確定函數(shù)在閉區(qū)間內(nèi)的最值,考查運(yùn)算能力.21、(1)(2)或【解析】(1)求出曲線與坐標(biāo)軸的交點(diǎn)坐標(biāo),設(shè)出圓的一般方程,代入求解;(2)分類討論,斜率不存在時(shí),直接驗(yàn)證,斜率存在時(shí),設(shè)直線方程,求出圓心到直線的距離,由勾股定理求解【小問1詳解】時(shí),,又得,,所以三交點(diǎn)為,設(shè)圓方程為,則,解得,圓方程為;【小問2詳解】由(1)知圓標(biāo)準(zhǔn)方程為,圓心為,半徑為,直線斜率不存在時(shí),直線為,它與圓的兩交點(diǎn)為,滿足題意;斜率存在時(shí),設(shè)直線方程為,即,圓心到的距離為,又,所以,,直線方程為即所以直線方程是:或22、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;也可利用空間向量計(jì)算證明;(Ⅱ)可以將平面擴(kuò)展,將線面角轉(zhuǎn)化,利用幾何方法作出線面角,然后計(jì)算;也可以建立空間直角坐標(biāo)系,利用空間向量計(jì)算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標(biāo)法以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則、、、,,,設(shè)平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設(shè)正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設(shè)的中點(diǎn)為F,延長,易證三線交于一點(diǎn)P因?yàn)?,所以直線與平面所成的角,即直線與平面所成的角設(shè)正方體的棱長為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鍍硅鋼卷行業(yè)運(yùn)行狀況及發(fā)展前景分析報(bào)告
- 2025-2030年中國鋰電池鋁塑膜行業(yè)運(yùn)營狀況及發(fā)展前景分析報(bào)告
- 2025-2030年中國鈾資源產(chǎn)業(yè)運(yùn)行動(dòng)態(tài)及發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國輕鋼結(jié)構(gòu)行業(yè)十三五規(guī)劃及發(fā)展策略分析報(bào)告
- 2025-2030年中國航空保險(xiǎn)行業(yè)市場(chǎng)深度調(diào)查及投資前景預(yù)測(cè)報(bào)告
- 2025-2030年中國羊毛衫市場(chǎng)十三五規(guī)劃及發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國稀釋劑市場(chǎng)運(yùn)行狀況及前景趨勢(shì)分析報(bào)告
- 2025山西省安全員《C證》考試題庫
- 河北石油職業(yè)技術(shù)大學(xué)《舞弊審計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年重慶市建筑安全員考試題庫
- 新漢語水平考試(HSK6級(jí))真題
- 2025年安徽省合肥市中考數(shù)學(xué)模擬試卷(附答案解析)
- 數(shù)字孿生與光伏儲(chǔ)能集成
- 2025屆高考語文復(fù)習(xí):補(bǔ)寫語句+課件
- Siemens WinCC:WinCC趨勢(shì)圖與歷史數(shù)據(jù)技術(shù)教程.Tex.header
- 保護(hù)和傳承中國傳統(tǒng)文化遺產(chǎn)閱讀題答案
- 人教版生物八年級(jí)下冊(cè)全冊(cè)教學(xué)課件
- 四川省高職單招汽車類《汽車文化》復(fù)習(xí)備考試題庫(濃縮500題)
- 養(yǎng)牛購料購銷合同范本
- 衛(wèi)生健康大數(shù)據(jù)底座建設(shè)需求
- 勞動(dòng)合同范本1997
評(píng)論
0/150
提交評(píng)論