臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

臨滄市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設(shè)具有相關(guān)關(guān)系的兩個變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.32.設(shè)是定義在R上的可導(dǎo)函數(shù),若(為常數(shù)),則()A. B.C. D.3.己知F為拋物線的焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.164.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.相離5.已知雙曲線:,直線經(jīng)過點(diǎn),若直線與雙曲線的右支只有一個交點(diǎn),則直線的斜率的取值范圍是()A. B.C. D.6.已知橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,直線與橢圓的另一個交點(diǎn)為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.7.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對稱點(diǎn)為,則()A.-4 B.-10C.4 D.108.已知直線m經(jīng)過,兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.29.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.410.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.11.橢圓的長軸長為()A. B.C. D.12.拋物線的焦點(diǎn)到雙曲線的漸近線的距離是()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,左右焦點(diǎn)分別為,若過右焦點(diǎn)的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點(diǎn),且軸,則雙曲線的離心率是_________.14.已知,,則___________.15.設(shè)在中,角A、B、C所對的邊分別為a、b、c,從下列四個條件:①;②;③;④中選出三個條件,能使?jié)M足所選條件的存在且唯一的所有c的值為______.16.以下四個關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),若,則動點(diǎn)P的軌跡為雙曲線;②拋物線焦點(diǎn)坐標(biāo)是;③過定圓C上一定點(diǎn)A作圓的動弦AB,O為坐標(biāo)原點(diǎn),若,則動點(diǎn)P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點(diǎn)其中真命題的序號為______(寫出所有真命題的序號.)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.18.(12分)已知函數(shù)(1)求函數(shù)在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值19.(12分)如圖,已知頂點(diǎn),,動點(diǎn)分別在軸,軸上移動,延長至點(diǎn),使得,且.(1)求動點(diǎn)的軌跡;(2)過點(diǎn)分別作直線交曲線于兩點(diǎn),若直線的傾斜角互補(bǔ),證明:直線的斜率為定值;(3)過點(diǎn)分別作直線交曲線于兩點(diǎn),若,直線是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn),若不是,說明理由.20.(12分)已知直線l:x-y+2=0,一個圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點(diǎn),且|AB|=,求m的值21.(12分)橢圓:()的離心率為,遞增直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若,求直線的斜率.22.(10分)著名的“康托爾三分集”是由德國數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點(diǎn),故③正確;根據(jù)線性回歸分析中相關(guān)系數(shù)的定義:在線性回歸分析中,相關(guān)系數(shù)為r,越接近于1,相關(guān)程度越大,故④不正確;對于觀察值來說,越大,“x與y有關(guān)系”的可信程度越大,故⑤正確.故選:C【點(diǎn)睛】本題主要考查用樣本估計總體、線性回歸方程、獨(dú)立性檢驗(yàn)的基本思想.2、C【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】.故選:C.3、A【解析】由拋物線的性質(zhì):過焦點(diǎn)的弦長公式計算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)?,所以,所以,故選:A.4、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現(xiàn)與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標(biāo)準(zhǔn)方程為:,所以圓心坐標(biāo)為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C5、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個交點(diǎn).【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經(jīng)過點(diǎn)的直線與雙曲線的右支只有一個交點(diǎn),可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D6、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,可得離心率.【詳解】如圖所示:因?yàn)闉榈妊切?,且,又,所以,所以,過點(diǎn)作軸,垂足為,則,由,,得,因?yàn)辄c(diǎn)在橢圓上,所以,所以,即離心率,故選:B.7、A【解析】根據(jù)關(guān)于平面對稱的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對稱點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對稱的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對稱的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對稱,考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題8、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A9、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.10、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡.【詳解】因?yàn)?,所以,則故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡計算即可,較簡單.11、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.12、B【解析】先確定拋物線的焦點(diǎn)坐標(biāo),和雙曲線的漸近線方程,再由點(diǎn)到直線的距離公式即可求出結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,雙曲線的漸近線方程為,由點(diǎn)到直線的距離公式可得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可得,進(jìn)而可得,再根據(jù),可得再根據(jù)雙曲線的定義,即可得到,進(jìn)而求出結(jié)果.【詳解】如圖所示:設(shè)切點(diǎn)為,所以,又軸所以,所以,由,,所以又,所以故答案為:.14、5【解析】根據(jù)空間向量的數(shù)量積運(yùn)算的坐標(biāo)表示運(yùn)算求解即可.【詳解】解:因?yàn)?,,所?故答案為:15、,##,【解析】由①②結(jié)合正弦定理可求出,但是角不唯一,故所選條件中不能同時有①②,只能是①③④或②③④,若選①③④,結(jié)合余弦定理可求,若選②③④,結(jié)合正弦定理即可求解【詳解】由①②結(jié)合正弦定理,所以,此時角不唯一,所以故所選條件中不能同時有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因?yàn)?,,所以,由正弦定理得,,故答案為:?6、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點(diǎn)判斷命題②;分析點(diǎn)P滿足的關(guān)系判斷命題③;按取值討論計算半焦距判斷命題④作答.【詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點(diǎn)坐標(biāo)是,命題②正確;對于③,令定圓C的圓心為C,因,則點(diǎn)P是弦AB的中點(diǎn),當(dāng)P與C不重合時,有,點(diǎn)P在以線段AC為直徑的圓上,當(dāng)P與C重合時,點(diǎn)P也在以線段AC為直徑的圓上,因此,動點(diǎn)P的軌跡是以線段AC為直徑的圓(除A點(diǎn)外),則命題③不正確;對于④,曲線的焦點(diǎn)為,當(dāng)時,橢圓中半焦距c滿足:,其焦點(diǎn)為,當(dāng)時,雙曲線中半焦距滿足:,其焦點(diǎn)為,因此曲線與曲線(且)有相同的焦點(diǎn),命題④正確,所以真命題的序號為②④.故答案為:②④【點(diǎn)睛】易錯點(diǎn)睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關(guān)系式:;雙曲線的實(shí)半軸長、虛半軸長、半焦距分別為、、滿足關(guān)系式:,在同一問題中出現(xiàn)認(rèn)真區(qū)分,不要混淆.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接交于點(diǎn),連接,要證明,只需證明平面即可;(2)以D為原點(diǎn)建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點(diǎn),連接四邊形為正方形,,且為的中點(diǎn)又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標(biāo)系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為18、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點(diǎn)斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時的取值范圍即可得解.【詳解】(1)因?yàn)椋?,∴切線方程為,即+1;(2),所以當(dāng)或時,,當(dāng)時,,所以函數(shù)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,極大值為,極小值為19、(1);(2)證明見解析;(3).【解析】(1)設(shè)點(diǎn)M,P,Q的坐標(biāo),將向量進(jìn)行坐標(biāo)化,整理即可得軌跡方程;(2)設(shè)點(diǎn),,直線的傾斜角互補(bǔ),則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫出直線AB的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過的定點(diǎn)【詳解】(1)設(shè),,.由,得,即.因?yàn)?,所以,所?所以動點(diǎn)的軌跡為拋物線,其方程為.(2)證明:設(shè)點(diǎn),,若直線的傾斜角互補(bǔ),則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因?yàn)椋?,即,①直線的方程為:,整理得:,②將①代入②得,即,當(dāng)時,即直線經(jīng)過定點(diǎn).【點(diǎn)睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點(diǎn)問題.20、(1)(2)0【解析】(1)設(shè)出圓心坐標(biāo),利用題干條件得到方程,求出,從而求出該圓的方程;(2)利用點(diǎn)到直線距離公式及垂徑定理進(jìn)行求解.【小問1詳解】設(shè)圓心為,,則由題意得:,解得:或(舍去),故該圓的方程為【小問2詳解】圓心到直線的距離為,由垂徑定理得:,解得:21、1【解析】根據(jù)離心率寫出,設(shè)出直線為,把直線的方程與橢圓進(jìn)行聯(lián)立消,寫出韋達(dá)定理,再利用,即可解出,進(jìn)而求出直線的斜率.【詳解】,.設(shè)遞增直線的方程為,把直線的方程與橢圓進(jìn)行聯(lián)立:.①,②.③.把③代入①中得④.把④代入②中得...22、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項(xiàng)公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運(yùn)算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論