




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
青海省海東市二中2023年高二上數(shù)學期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平行六面體中,若,則()A. B.1C. D.2.已知實數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.3.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.4.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形5.已知橢圓的左、右焦點分別為,,點P是橢圓上一點且的最大值為,則橢圓離心率為()A. B.C. D.6.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.7.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B.C. D.8.函數(shù)的圖象大致為()A B.C D.9.如圖,點A的坐標為,點C的坐標為,函數(shù),若在矩形內(nèi)隨機取一點,則此點取自陰影部分的概率等于()A. B.C. D.10.設為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.3211.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.12.若數(shù)列的通項公式為,則該數(shù)列的第5項為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為,,P為橢圓上一點,滿足(O為坐標原點).若,則橢圓的離心率為______14.已知,若三個數(shù)成等差數(shù)列,則_________;若三個數(shù)成等比數(shù)列,則__________15.根據(jù)如下樣本數(shù)據(jù)34567402.5-0.50.5-2得到的回歸方程為若,則的值為___________.16.若不等式的解集為,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設等差數(shù)列的前項和為,為各項均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項公式;(2)設,數(shù)列的前項和為,求證:18.(12分)已知拋物線:的焦點為,直線與拋物線在第一象限的交點為,且(1)求拋物線的方程;(2)經(jīng)過焦點作互相垂直的兩條直線,,與拋物線相交于,兩點,與拋物線相交于,兩點.若,分別是線段,的中點,求的最小值19.(12分)設:實數(shù)滿足,:實數(shù)滿足(1)若,且為真,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍20.(12分)在中,角的對邊分別為,已知,,且.(1)求角的大?。唬?)若,面積為,試判斷的形狀,并說明理由.21.(12分)如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=2,E,F(xiàn)分別為AD和PB的中點.請用空間向量知識解答下列問題:(1)求證:EF//平面PDC;(2)求平面EFC與平面PBD夾角的余弦值.22.(10分)已知拋物線上的點M到焦點F的距離為5,點M到x軸的距離為(1)求拋物線C的方程;(2)若拋物線C的準線l與x軸交于點Q,過點Q作直線交拋物線C于A,B兩點,設直線FA,F(xiàn)B的斜率分別為,.求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.2、D【解析】利用特殊值排除錯誤選項,利用函數(shù)單調(diào)性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D3、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎題.4、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.5、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因為在上單調(diào)遞減,所以當時函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A6、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B7、A【解析】將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬中檔題.8、A【解析】利用導數(shù)求得的單調(diào)區(qū)間,結合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當時,,可得選項為A故選:A9、A【解析】分別由矩形面積公式與微積分幾何意義計算陰影部分和矩形部分的面積,最后由幾何概型概率計算公式計算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點取自陰影部分的概率等于,故選:A10、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當且僅當取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.11、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.12、C【解析】直接根據(jù)通項公式,求;【詳解】,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由可得,再結合橢圓的性質(zhì)可得為直角三角形,由題意設,則,由勾股定理可得,再結合橢圓的定義可求出離心率【詳解】因為,所以,所以,因為,所以,所以為直角三角形,即,所以設,則,所以,得,因為則,所以,所以,即離心率為,故答案為:14、①.4②.【解析】由等差中項與等比中項計算即可.【詳解】若a,b,c三個數(shù)成等差數(shù)列.所以.若a,b,c三個數(shù)成等比數(shù)列.所以故答案為:4,.15、-1.4##【解析】分別求出的值,即得到樣本中心點,根據(jù)樣本中心點一定在回歸直線上,可求得答案.【詳解】,則得到樣本中心點為,因為樣本中心點一定在回歸直線上,故,解得,故答案為:16、11【解析】根據(jù)題意得到2與3是方程的兩個根,再根據(jù)兩根之和與兩根之積求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,則,,所以.故答案為:11三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)an=n,bn=(2)證明見解析【解析】(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項公式及前n項和公式,列出方程組求解即可得答案;(2)求出,利用裂項相消求和法求出前項和為,即可證明【小問1詳解】解:設等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以18、(1);(2)8.【解析】(1)寫出拋物線E的準線,利用拋物線定義求出p即可作答.(2)由(1)求出焦點坐標,設出直線的方程,并與拋物線E的方程聯(lián)立,由此求出C點坐標,同理可得D點坐標,列式計算作答.小問1詳解】拋物線:的準線方程為:,由拋物線定義得:,解得,所以拋物線的方程為:.【小問2詳解】由(1)知,點,顯然直線,的斜率都存在且不為0,設直線斜率為,則的斜率為,直線的方程為:,由消去y并整理得,設,則,于得線段PQ中點,同理得,則,當且僅當,即時取“=”,所以的最小值是8.【點睛】結論點睛:拋物線方程中,字母p的幾何意義是拋物線的焦點F到準線的距離,等于焦點到拋物線頂點的距離19、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時實數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關系,根據(jù)區(qū)間端點列不等式求解即可【小問1詳解】當時,,解得,即p為真時,實數(shù)x的取值范圍為.由,解得,即q為真時,實數(shù)x的取值范圍為若為真,則,解得實數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設,,則,又由,得,因為,則,有,解得因此a的取值范圍為20、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應用,考查方程思想與運算求解能力,屬于中檔題21、(1)證明見解析(2)【解析】(1)以為原點,以所在的直線分別為軸,建立空間直角坐標系,然后求出平面的法向量,再求出,判斷是否與法垂直即可,(2)分別求出平面EFC與平面PBD的法向量,利用向量夾角公式求解即可【小問1詳解】因PD⊥底面ABCD,平面,所以,因為四邊形為正方形,所以,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,如圖所示,則,因為E,F(xiàn)分別為AD和PB的中點,所以,所以,因為,所以平面,所以平面的一個法向量為,因為,所以,因為平面,所以EF//平面PDC;【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津市河西區(qū)實驗中學2024-2025學年高三年級第二次四校聯(lián)考物理試題含解析
- 江西省鷹潭市2025屆第二學期高三4月綜合測試(二)英語試題試卷含解析
- 寧波市鎮(zhèn)海區(qū)重點中學2025年初三中考熱身練習試題英語試題試卷含答案
- 蘭州工業(yè)學院《誤差理論與測量平差基礎》2023-2024學年第二學期期末試卷
- 江蘇省重點中學2025年普通高中高三第一次診斷性測試物理試題含解析
- 長沙航空職業(yè)技術學院《客戶關系管理》2023-2024學年第一學期期末試卷
- 遼寧省阜新二中2025年高三畢業(yè)生復習統(tǒng)一檢測試題生物試題含解析
- 山東省濟寧市市中學區(qū)2025屆初三下第二次測試(化學試題理)試題含解析
- 遼寧省盤錦市大洼區(qū)市級名校2024-2025學年初三中考沖刺預測卷(六)生物試題含解析
- 上海外國語大學《英語教學評價》2023-2024學年第二學期期末試卷
- 2024-2025學年人教版七年級數(shù)學(下)期中試卷(考試范圍:第7-9章)(含解析)
- 2025-2030年中國CAE軟件行業(yè)市場行情監(jiān)測及發(fā)展前景研判報告
- 術前討論制度課件
- 2025-2030中國工程造價咨詢行業(yè)市場深度調(diào)研及競爭格局與投資研究報告
- 購物卡采購合同
- 2025年光伏項目勞務分包合同模板
- 2024福建省能源石化集團有限責任公司秋季社會招聘120人筆試參考題庫附帶答案詳解
- 2025年四川省對口招生(農(nóng)林牧漁類)《農(nóng)業(yè)經(jīng)營與管理》考試復習題庫(含答案)
- 腦心健康管理師的學習匯報
- 2024年高考物理考綱解讀與熱點難點突破專題12分子動理論氣體及熱力學定律教學案
- 2025年浙江杭州熱聯(lián)集團股份有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論