黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題含解析_第1頁
黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題含解析_第2頁
黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題含解析_第3頁
黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題含解析_第4頁
黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱十九中2024屆數(shù)學高二上期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知過點A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)2.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.3.函數(shù)在的最大值是()A. B.C. D.4.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.5.“楊輝三角”是中國古代數(shù)學文化的瑰寶之一,最早在中國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.566.函數(shù)的導數(shù)記為,則等于()A. B.C. D.7.盤子里有肉餡、素餡和豆沙餡的包子共個,從中隨機取出個,若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個數(shù)為()A. B.C. D.8.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.49.已知向量,且,則的值為()A.4 B.2C.3 D.110.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數(shù)多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交11.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點()A.個 B.個C.個 D.個12.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點,BE,DH的交點為G,則的化簡結果為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程為_____14.命題“,”是真命題,則的取值范圍是________15.已知數(shù)列滿足,若對任意恒成立,則實數(shù)的取值范圍為________16.某甲、乙兩人練習跳繩,每人練習10組,每組不間斷跳繩計數(shù)的莖葉圖如圖,則下面結論中所有正確的序號是___________.①甲比乙的極差大;②乙的中位數(shù)是18;③甲的平均數(shù)比乙的大;④乙的眾數(shù)是21.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖長方體中,,,點為的中點.(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.18.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長.19.(12分)已知拋物線的焦點為F,為拋物線C上的點,且.(1)求拋物線C的方程;(2)若直線與拋物線C相交于A,B兩點,求弦長.20.(12分)已知圓內(nèi)有一點,過點作直線交圓于、兩點(1)當經(jīng)過圓心時,求直線的方程;(2)當弦的長為時,求直線的方程21.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.22.(10分)已知數(shù)列滿足,().(1)證明:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列滿足:(),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設出切點,對函數(shù)求導得到切點處的斜率,由點斜式得到切線方程,化簡為,整理得到方程有兩個解即可,解出不等式即可.【詳解】設切點為,,,則切線方程為:,切線過點代入得:,,即方程有兩個解,則有或.故答案為:A.【點睛】這個題目考查了函數(shù)的導函數(shù)的求法,以及過某一點的切線方程的求法,其中應用到導數(shù)的幾何意義,一般過某一點求切線方程的步驟為:一:設切點,求導并且表示在切點處的斜率;二:根據(jù)點斜式寫切點處的切線方程;三:將所過的點代入切線方程,求出切點坐標;四:將切點代入切線方程,得到具體的表達式.2、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B3、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C4、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D5、B【解析】由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),可得第8行,第3個數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),故第8行,第3個數(shù)是為故選:B6、D【解析】求導后代入即可.【詳解】,.故選:D.7、C【解析】計算出肉餡包子和豆沙餡包子的個數(shù),即可求得素餡包子的個數(shù).【詳解】由題意可知,肉餡包子的個數(shù)為,從中隨機取出個,不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個數(shù)為,因此,素餡包子的個數(shù)為.故選:C.8、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B9、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.10、D【解析】設直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.11、A【解析】利用極小值的定義判斷可得出結論.【詳解】由導函數(shù)在區(qū)間內(nèi)的圖象可知,函數(shù)在內(nèi)的圖象與軸有四個公共點,在從左到右第一個點處導數(shù)左正右負,在從左到右第二個點處導數(shù)左負右正,在從左到右第三個點處導數(shù)左正右正,在從左到右第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極小值點有個,故選:A.12、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運算法則即可求出結果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點,,,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】本題利用拋物線的標準方程得出拋物線的準線方程【詳解】由拋物線方程可知,拋物線的準線方程為:故答案為【點睛】本題考查拋物線的相關性質(zhì),主要考查拋物線的簡單性質(zhì)的應用,考查拋物線的準線的確定,是基礎題14、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數(shù)利用函數(shù)的單調(diào)性計算可得.【詳解】,等價于在上有解設,,則在上單調(diào)遞減,在上單調(diào)遞增,又,,所以,即故答案為:15、【解析】根據(jù)給定條件求出,構造新數(shù)列并借助單調(diào)性求解作答.【詳解】在數(shù)列中,,當,時,,則有,而滿足上式,因此,,,顯然數(shù)列是遞增數(shù)列,且,,又對任意恒成立,則,所以實數(shù)的取值范圍為.故答案為:【點睛】思路點睛:給定數(shù)列的前項和或者前項積,求通項時,先要按和分段求,然后看時是否滿足時的表達式,若不滿足,就必須分段表達.16、①③④【解析】根據(jù)莖葉圖提供的數(shù)據(jù)求出相應的極差、中位數(shù)、均值、眾數(shù)再判斷【詳解】由莖葉圖,甲的極差是37-8=29,乙的極差是23-9=14,甲極差大,①正確;乙中位數(shù)是,②錯;甲平均數(shù)是:,乙的平均數(shù)為:16.9,③正確;乙的眾數(shù)是21,④正確故答案為:①③④三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結合線面垂直的判定定理證明即可;(3)建立空間直角坐標系,利用向量法求面面角的余弦值即可.【詳解】(1)連接交與點,連接四邊形為正方形,點為的中點又點為的中點,平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標系顯然平面的法向量即為平面的法向量,不妨設為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【點睛】關鍵點睛:在第一問中,關鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關鍵是建立坐標系,利用向量法求面面角的余弦值.18、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.19、(1);(2)【解析】(1)根據(jù)拋物線定義可得,從而得到拋物線C的方程;(2)設,聯(lián)立拋物線方程,消去,可得的方程,運用韋達定理和弦長公式,計算可得所求值【詳解】(1),所以,即拋物線C的方程.(2)設,由得所以,所以.【點睛】方法點睛:計算拋物線弦長方法,(1)若直線過拋物線的焦點,則弦長|AB|=x1+x2+p=(α為弦AB的傾斜角)(2)若直線不過拋物線的焦點,則用|AB|=·|x1-x2|求解20、(1);(2)或【解析】(1)求得圓心坐標,由點斜式求得直線點的方程.(2)分成直線斜率存在和不存在兩種情況進行分類討論,由此求得直線的方程.【詳解】(1)圓心坐標為(1,0),,,整理得(2)圓的半徑為3,當直線的斜率存在時,設直線的方程為,整理得,圓心到直線的距離為,解得,代入整理得當直線的斜率不存在時,直線的方程為,經(jīng)檢驗符合題意∴直線的方程為或21、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構造函數(shù)法,結合導數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論