吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題含解析_第1頁
吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題含解析_第2頁
吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題含解析_第3頁
吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題含解析_第4頁
吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省梅河口五中等聯(lián)誼校2023年高二數(shù)學第一學期期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列直線中,傾斜角最大的為()A. B.C. D.2.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件3.已知向量,,若,則()A.1 B.C. D.24.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.5.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在6.某幾何體的三視圖如圖所示,則其對應的幾何體是A. B.C. D.7.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.8.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點,,則()A.B.C.D.9.加斯帕爾·蒙日(圖1)是18~19世紀法國著名的幾何學家,他在研究圓錐曲線時發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點都在同一個圓上,其圓心是橢圓的中心,這個圓被稱為“蒙日圓”(圖2).則橢圓的蒙日圓的半徑為()A.3 B.4C.5 D.610.若,則x的值為()A.4 B.6C.4或6 D.811.數(shù)列滿足,對任意,都有,則()A. B.C. D.12.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準線交于點C,若,則直線l的斜率為______.15.如圖所示,在平行六面體中,,若,則___________.16.復數(shù)的實部為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.18.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值19.(12分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(1)證明:平面;(2)求二面角的正弦值20.(12分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項公式;(2)設,求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項和.從①前n項和,②,③且,這三個條件中任選一個,補充在上面的問題中并作答.21.(12分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)經(jīng)過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.22.(10分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】首先分別求直線的斜率,再結合直線傾斜角與斜率的關系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結合直線的斜率與傾斜角的關系,可知直線的傾斜角最大.故選:D2、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.3、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B4、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.5、A【解析】應用直線與圓的相離關系可得,再由余弦定理及三角形內角的性質即可判斷三角形的形狀.【詳解】由題設,,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.6、A【解析】根據(jù)三視圖即可還原幾何體.【詳解】根據(jù)三視圖,特別注意到三視圖中對角線的位置關系,容易判斷A正確.【點睛】本題主要考查了三視圖,屬于中檔題.7、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設平面ABC的法向量為,而,,則,即有,不妨令,則,故,設三棱柱的高為h,則,故選:D.8、D【解析】根據(jù)空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D9、A【解析】由蒙日圓的定義,確定出圓上的一點即可求出圓的半徑.【詳解】由蒙日圓的定義,可知橢圓的兩條切線的交點在圓上,所以,故選:A10、C【解析】根據(jù)組合數(shù)的性質可求解.【詳解】,或,即或.故選:C11、C【解析】首先根據(jù)題設條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于??碱}.12、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當?shù)忍柍闪?,故的最小值?,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設出邊長,找到邊長與之間等量關系,然后把等量關系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設,則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)14、【解析】由拋物線方程求出焦點坐標與準線方程,設直線為,、,即可得到的坐標,再聯(lián)立直線與拋物線方程,消元列出韋達定理,表示出、的坐標,根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準線為,設直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:15、2【解析】題中幾何體為平行六面體,就要充分利用幾何體的特征進行轉化,,再將轉化為,以及將轉化為,,總之等式右邊為,,,從而得出,.【詳解】解:因為,又,所以,,則.故答案為:2.【點睛】要充分利用幾何體的幾何特征,以及將作為轉化的目標,從而得解.16、【解析】復數(shù),其實部為.考點:復數(shù)的乘法運算、實部.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得結果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內的有個,分別記為、、、,成績在內的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學成績在、內的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內的有個,分別記為、、、,成績在內的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.18、(1);(2).【解析】(1)先對函數(shù)求導,根據(jù)題中條件,列出方程組求解,即可得出結果;(2)先由(1)得到,導數(shù)的方法研究其單調性,進而可求出最值.【詳解】(1)因為,所以,又函數(shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調遞增,在上單調遞減,因此【點睛】方法點睛:該題考查的是有關利用導數(shù)研究函數(shù)的問題,解題方法如下:(1)先對函數(shù)求導,根據(jù)題意,結合函數(shù)在某個點處取得極值,導數(shù)為0,函數(shù)值為極值,列出方程組,求得結果;(2)將所求參數(shù)代入,得到解析式,利用導數(shù)研究其單調性,得到其最大值.19、(1)證明見解析(2)【解析】(1)設,線段的中點為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標系,求出平面的一個法向量和平面的一個法向量后可求二面角的余弦值.【小問1詳解】證明:設,線段的中點為H,分別連接又因為G是的中點,所以因為四邊形為矩形,據(jù)菱形性質知,O為的中點,所以,且,所以,且,所以四邊形是平行四邊形,所以又因為平面,平面,所以平面【小問2詳解】解:據(jù)四邊形是菱形的性質知,又因為平面平面,平面,平面平面,故平面,所以以分別為x軸,y軸,以過與的交點O,且垂直于平面的直線為z軸建立空間直角坐標系如圖所示,則有,所以設平面的一個法向量,則令,則,且,所以設平面的一個法向量,則令,則,且,所以所以,所以二面角的正弦值為20、(1)(2)見解析(3)【解析】(1)選①,根據(jù)與的關系即可得出答案;選②,根據(jù)與的關系結合等差數(shù)列的定義即可得出答案;選③,利用等差中項法可得數(shù)列是等差數(shù)列,再求出公差,即可得解;(2)求出數(shù)列的通項公式,再根據(jù)等比數(shù)列的定義即可得證;(3)求出數(shù)列的通項公式,再利用錯位相減法即可得出答案.【小問1詳解】解:選①,當時,,當時,也成立,所以;選②,因為,所以,所以數(shù)列是以為公差的等差數(shù)列,所以;選③且,因為,所以數(shù)列是等差數(shù)列,公差,所以;【小問2詳解】解:由(1)得,則,所以數(shù)列是以為首項,為公比的等比數(shù)列;【小問3詳解】解:,,①,②由①②得,所以.21、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經(jīng)過點,所以有.②聯(lián)立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結合三角形面積公式求出斜率,得出直線的方程.22、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設CD的中點為P,連接BP,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論