廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題含解析_第1頁
廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題含解析_第2頁
廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題含解析_第3頁
廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題含解析_第4頁
廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省名校聯(lián)盟2024屆高二上數(shù)學期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.2.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.3.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.44.下列導數(shù)運算正確的是()A. B.C. D.5.金剛石的成分為純碳,是自然界中存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它外接球的體積為()A. B.C. D.6.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件7.已知分別表示隨機事件發(fā)生的概率,那么是下列哪個事件的概率()A事件同時發(fā)生B.事件至少有一個發(fā)生C.事件都不發(fā)生D事件至多有一個發(fā)生8.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.9.已知,若,則()A. B.2C. D.e10.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.11.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.912.一輛汽車做直線運動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________14.如圖莖葉圖記錄了A、兩名營業(yè)員五天的銷售量,若A的銷售量的平均數(shù)比的銷售量的平均數(shù)多1,則A營業(yè)員銷售量的方差為___________.15.已知橢圓C:的左右焦點分別為,,O為坐標原點,以下說法正確的是______①過點的直線與橢圓C交于A,B兩點,則的周長為8②橢圓C上存在點P,使得③橢圓C的離心率為④P為橢圓上一點,Q為圓上一點,則線段PQ的最大長度為316.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點是坐標原點,焦點在軸的正半軸上,是拋物線上的點,點到焦點的距離為1,且到軸的距離是(1)求拋物線的標準方程;(2)假設(shè)直線通過點,與拋物線相交于,兩點,且,求直線的方程18.(12分)某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費用.19.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點,求直線PC與平面AED所成的角的正弦值.20.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準線、對稱軸、變量x的范圍;(2)以坐標原點O為頂點,作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長21.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值22.(10分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D2、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設(shè)等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.3、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結(jié)果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設(shè)過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關(guān)性質(zhì),考查了計算能力,是中檔題4、B【解析】利用基本初等函數(shù)的導數(shù)和復合函數(shù)的導數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B5、A【解析】求得外接球的半徑,進而計算出外接球體積.【詳解】設(shè),正八面體的棱長為,根據(jù)正八面體的性質(zhì)可知:,所以是外接球的球心,且半徑,所以外接球的體積為.故選:A6、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.7、C【解析】表示事件至少有一個發(fā)生概率,據(jù)此得到答案.【詳解】分別表示隨機事件發(fā)生的概率,表示事件至少有一個發(fā)生的概率,故表示事件都不發(fā)生的概率.故選:C.8、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.9、B【解析】求得導函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B10、B【解析】分別過點、作準線的垂線,垂足分別為點、,設(shè),根據(jù)拋物線的定義以及直角三角形的性質(zhì)可求得,結(jié)合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設(shè),則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.11、B【解析】先求得直線過定點,再根據(jù)當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B12、D【解析】首先求出函數(shù)的導函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數(shù)在物理中的應用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)和項與通項關(guān)系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調(diào)性得取值范圍,即得取值范圍,解得結(jié)果.【詳解】因為是6和的等差中項,所以當時,當時,因此當為偶數(shù)時,當為奇數(shù)時,因此因為在上單調(diào)遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調(diào)性求值域,考查綜合分析求解能力,屬較難題.14、44【解析】先根據(jù)題意求出x的值,進而利用方差公式求出A營業(yè)員銷售量的方差.【詳解】由A的平均數(shù)比的平均數(shù)多1知,A的總量比的總量多5,所以,A的平均數(shù)為17,方差為.故答案為:4415、①②④【解析】根據(jù)橢圓的幾何性質(zhì)結(jié)合的周長計算可判斷①;根據(jù),可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計算橢圓上的點到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點即設(shè)為P,故橢圓C上存在點P,使得,故②正確;對于③,,故③錯誤;對于④,設(shè)P為橢圓上一點,坐標為,則,故,因為,所以的最大值為2,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.16、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)拋物線的定義,結(jié)合到焦點、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設(shè)矛盾,設(shè)直線方程聯(lián)立拋物線方程,應用韋達定理求,,進而求,由題設(shè)向量垂直的坐標表示有求直線方程即可.【詳解】(1)由己知,可設(shè)拋物線的方程為,又到焦點的距離是1,∴點到準線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設(shè)直線的斜率不存在,則直線的方程為,與聯(lián)立可得交點、的坐標分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設(shè)不成立,∴直線的斜率存在.設(shè)直線為,整理得,設(shè),,聯(lián)立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或當時,直線的方程是,不滿足,舍去當時,直線的方程是,即,∴直線的方程是18、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當時,;當時,;當時,.即.【小問2詳解】因為,故,故該廠應繳納污水處理費1400元.19、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因為PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設(shè)平面的一個法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為20、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點、焦點、準線、對稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點M,又焦點F是△OAB的重心,則|OF|=|OM|.因為F(2,0),所以|OM|=|OF|=3.所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周長為2+4.【點睛】本題考查了拋物線簡單性質(zhì)的應用,解題關(guān)鍵利用好三角形重心的性質(zhì),屬于中檔題.21、(1)證明見解析;(2).【解析】(1)連接與交于點O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標系,求得平面的一個法向量,再根據(jù)底面,得到平面一個法向量,然后由夾角公式求解.【小問1詳解】如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論