版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省陽(yáng)江市2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的左右焦點(diǎn)分別是,,直線與雙曲線在第一象限的交點(diǎn)為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.2.設(shè)直線的傾斜角為,且,則滿足A. B.C. D.3.若點(diǎn),在拋物線上,是坐標(biāo)原點(diǎn),若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.4.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級(jí)四個(gè)班的182人中隨機(jī)抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機(jī)剔除的個(gè)數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,25.若,(),則,的大小關(guān)系是A. B.C. D.,的大小由的取值確定6.直線的傾斜角為A. B.C. D.7.如圖,過(guò)拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),與其準(zhǔn)線交于點(diǎn)(點(diǎn)位于之間)且于點(diǎn)且,則等于()A. B.C. D.8.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.29.下面四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.410.已知等差數(shù)列,,,則數(shù)列的前項(xiàng)和為()A. B.C. D.11.給出下列判斷,其中正確的是()A.三點(diǎn)唯一確定一個(gè)平面B.一條直線和一個(gè)點(diǎn)唯一確定一個(gè)平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)12.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是___________.14.設(shè)、為正數(shù),若,則的最小值是______,此時(shí)______.15.若點(diǎn)P為雙曲線上任意一點(diǎn),則P滿足性質(zhì):點(diǎn)P到右焦點(diǎn)的距離與它到直線的距離之比為離心率e,若C的右支上存在點(diǎn)Q,使得Q到左焦點(diǎn)的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______16.在等比數(shù)列中,已知,則________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)命題p:實(shí)數(shù)x滿足x≤2,或x>6,命題q:實(shí)數(shù)x滿足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且為真命題,求實(shí)數(shù)x的取值范圍;(2)若q是的充分不必要條件,求實(shí)數(shù)a的取值范圍.18.(12分)求滿足下列條件的圓錐曲線方程的標(biāo)準(zhǔn)方程.(1)經(jīng)過(guò)點(diǎn),兩點(diǎn)的橢圓;(2)與雙曲線-=1有相同的漸近線且經(jīng)過(guò)點(diǎn)的雙曲線.19.(12分)中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a20.(12分)已知直線經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn).(1)若直線的斜率為1,求;(2)若,求直線的方程.21.(12分)已知圓經(jīng)過(guò)點(diǎn)和,且圓心在直線上.(1)求圓的方程;(2)過(guò)原點(diǎn)的直線與圓交于M,N兩點(diǎn),若的面積為,求直線的方程.22.(10分)過(guò)原點(diǎn)O的圓C,與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B(0,2)(1)求圓C的標(biāo)準(zhǔn)方程;(2)直線l過(guò)B點(diǎn)與圓C相切,求直線l的方程,并化為一般式
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點(diǎn)為,∵直線與雙曲線在第一象限的交點(diǎn)在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負(fù)),故.故選:D.2、D【解析】因?yàn)?,所以,,,,故選D3、A【解析】根據(jù)等邊三角形的面積求得邊長(zhǎng),根據(jù)角度求得點(diǎn)的坐標(biāo),代入拋物線方程求得的值.【詳解】設(shè)等邊三角形的邊長(zhǎng)為,則,解得根據(jù)拋物線的對(duì)稱性可知,且,設(shè)點(diǎn)在軸上方,則點(diǎn)的坐標(biāo)為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A4、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機(jī)剔除人.故選:A.5、A【解析】∵且,∴,又,∴,故選A.6、B【解析】分析出直線與軸垂直,據(jù)此可得出該直線的傾斜角.【詳解】由題意可知,直線與軸垂直,該直線的傾斜角為.故選:B.【點(diǎn)睛】本題考查直線的傾斜角,關(guān)鍵是掌握直線傾斜角的定義,屬于基礎(chǔ)題7、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點(diǎn),準(zhǔn)線交軸于點(diǎn)G,則,又,∴,又于點(diǎn)且,∴BE∥AD,∴,即,∴,∴等于.故選:B.8、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.9、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說(shuō)法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.10、A【解析】求出通項(xiàng),利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.【詳解】因?yàn)榈炔顢?shù)列,,,所以,所以,所以數(shù)列的前項(xiàng)和為故B,C,D錯(cuò)誤.故選:A.11、C【解析】根據(jù)確定平面的條件可對(duì)每一個(gè)選項(xiàng)進(jìn)行判斷.【詳解】對(duì)A,如果三點(diǎn)在同一條直線上,則不能確定一個(gè)平面,故A錯(cuò)誤;對(duì)B,如果這個(gè)點(diǎn)在這條直線上,就不能確定一個(gè)平面,故B錯(cuò)誤;對(duì)C,兩條平行直線確定一個(gè)平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個(gè)平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對(duì)D,空間兩兩相交的三條直線可確定一個(gè)平面,也可確定三個(gè)平面,故D錯(cuò)誤.故選:C12、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)拋物線方程求出,進(jìn)而求出準(zhǔn)線方程.【詳解】拋物線為,則,解得:,準(zhǔn)線方程為:.故答案為:14、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.故答案為,【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題15、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點(diǎn)的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點(diǎn)的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.16、2【解析】由等比數(shù)列的相關(guān)性質(zhì)進(jìn)行求解.【詳解】由等比數(shù)列的相關(guān)性質(zhì)得:故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1){x|2<x<4};(2).【解析】(1)分別求出命題和為真時(shí)對(duì)應(yīng)的取值范圍,即可求出;(2)由題可知,列出不等式組即可求解.【詳解】解:(1)當(dāng)a=2時(shí),命題q:2<x<4,∵命題p:x≤2或x>6,,又為真命題,∴x滿足,∴2<x<4,∴實(shí)數(shù)x的取值范圍{x|2<x<4};(2)由題意得:命題q:a<x<2a;∵q是的充分不必要條件,,,解得,∴實(shí)數(shù)a的取值范圍.【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查根據(jù)充分不必要條件求參數(shù),一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(2)若是的充分不必要條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(3)若是的充分必要條件,則對(duì)應(yīng)集合與對(duì)應(yīng)集合相等;(4)若是的既不充分又不必要條件,則對(duì)應(yīng)的集合與對(duì)應(yīng)集合互不包含18、(1);(2)【解析】(1)由題意可得,,從而可求出橢圓的標(biāo)準(zhǔn)方程,(2)由題意設(shè)雙曲線的共漸近線方程為,再將的坐標(biāo)代入方程可求出的值,從而可求出雙曲線方程【小問(wèn)1詳解】因?yàn)?,所以P、Q分別是橢圓長(zhǎng)軸和短軸上的端點(diǎn),且橢圓的焦點(diǎn)在x軸上,所以,所以橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè)與雙曲線共漸近線的方程為,代入點(diǎn),解得m=2,所以雙曲線的標(biāo)準(zhǔn)方程為19、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡(jiǎn)即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問(wèn)1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問(wèn)2詳解】∵,∴,解得由余弦定理,得,∴.20、(1)8(2)【解析】(1)設(shè),由,進(jìn)而結(jié)合拋物線的定義,將點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,最后求得答案;(2)由,所以,設(shè)出直線方程并代入拋物線方程,進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【小問(wèn)1詳解】設(shè),拋物線的準(zhǔn)線方程為:,因?yàn)?,由拋物線定義可知,.直線,代入拋物線方程化簡(jiǎn)得:,則,所以.【小問(wèn)2詳解】設(shè),代入拋物線方程化簡(jiǎn)得:,所以,因?yàn)椋?,于是則直線的方程為:.21、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點(diǎn)為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點(diǎn)到直線的距離公式求出的值即可得答案.【小問(wèn)1詳解】解:設(shè)弦的中點(diǎn)為,則有,因?yàn)?,所以直線,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問(wèn)2詳解】解:設(shè)圓心到直線的距離為,因?yàn)?,所以或,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或,故直線的方程為或或.22、(1);(2)【解析】(1)設(shè)圓的標(biāo)準(zhǔn)方程為:,則分別代入原點(diǎn)和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過(guò)點(diǎn)與圓相切,則分別討論斜率存在與否,運(yùn)用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為,則分別代入原點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 的面粉銷售合同范本
- 全新公司員工勞動(dòng)合同書模板
- 軟件產(chǎn)品采購(gòu)合同范本
- 重慶個(gè)人房屋買賣合同標(biāo)準(zhǔn)范文
- 2024年大數(shù)據(jù)分析與應(yīng)用項(xiàng)目合同
- 物業(yè)管理的關(guān)鍵問(wèn)題
- 范文藥師租賃合同
- 勞務(wù)班組承包合同
- 醫(yī)療器械基礎(chǔ)知識(shí)培訓(xùn)篇
- 超低水頭軸流式液力透平能量特性的數(shù)值與試驗(yàn)研究
- 致命性大出血急救專家共識(shí)
- 住院成人高血糖患者血糖監(jiān)測(cè)醫(yī)護(hù)協(xié)議處方共識(shí)
- DL-T5816-2020分布式電化學(xué)儲(chǔ)能系統(tǒng)接入配電網(wǎng)設(shè)計(jì)規(guī)范
- 2024年4月自考00832英語(yǔ)詞匯學(xué)試題
- 競(jìng)賽試卷(試題)-2023-2024學(xué)年六年級(jí)下冊(cè)數(shù)學(xué)人教版
- 《電力用直流電源系統(tǒng)蓄電池組遠(yuǎn)程充放電技術(shù)規(guī)范》
- T-ACEF 095-2023 揮發(fā)性有機(jī)物泄漏檢測(cè)紅外成像儀(OGI)技術(shù)要求及監(jiān)測(cè)規(guī)范
- 骨科手術(shù)的術(shù)后飲食和營(yíng)養(yǎng)指導(dǎo)
- 旅游定制師入行培訓(xùn)方案
- 2024年中國(guó)南方航空股份有限公司招聘筆試參考題庫(kù)含答案解析
- 六年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題100題
評(píng)論
0/150
提交評(píng)論