河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第1頁(yè)
河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第2頁(yè)
河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第3頁(yè)
河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第4頁(yè)
河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省唐河縣友蘭實(shí)驗(yàn)高中2023年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如果橢圓的弦被點(diǎn)平分,那么這條弦所在的直線的方程是()A. B.C. D.2.【山東省濰坊市二模】已知雙曲線的離心率為,其左焦點(diǎn)為,則雙曲線的方程為()A. B.C. D.3.已知函數(shù).若數(shù)列的前n項(xiàng)和為,且滿(mǎn)足,,則的最大值為()A.9 B.12C.20 D.4.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.5.已知a,b為正實(shí)數(shù),且,則的最小值為()A.1 B.2C.4 D.66.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項(xiàng)和B.由滿(mǎn)足對(duì)都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對(duì)一切,7.已知,若對(duì)于且都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.△ABC兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.9.(2016新課標(biāo)全國(guó)Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點(diǎn),點(diǎn)M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.210.某中學(xué)高一年級(jí)有200名學(xué)生,高二年級(jí)有260名學(xué)生,高三年級(jí)有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為40的樣本,則高二年級(jí)抽取的人數(shù)為()A.10 B.13C.17 D.2611.已知圓C的方程為,點(diǎn)P在圓C上,O是坐標(biāo)原點(diǎn),則的最小值為()A.3 B.C. D.12.五行學(xué)說(shuō)是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬(wàn)物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________14.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點(diǎn),cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,則點(diǎn)E的坐標(biāo)為_(kāi)_______15.若恒成立,則______.16.?dāng)?shù)列滿(mǎn)足,,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點(diǎn).(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.18.(12分)如圖,直三棱柱中,,,是棱的中點(diǎn),(1)求異面直線所成角的余弦值;(2)求二面角的余弦值19.(12分)已知點(diǎn)及圓,點(diǎn)P是圓B上任意一點(diǎn),線段的垂直平分線l交半徑于點(diǎn)T,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點(diǎn)C、D、M、N,且四邊形是菱形,求該菱形周長(zhǎng)的最大值20.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)設(shè)數(shù)列的前項(xiàng)和,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前項(xiàng)和,求使成立的的最小值22.(10分)已知數(shù)列滿(mǎn)足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)該弦所在直線與橢圓的兩個(gè)交點(diǎn)分別為,,則,利用點(diǎn)差法可得答案.【詳解】設(shè)該弦所在直線與橢圓的兩個(gè)交點(diǎn)分別為,,則因?yàn)椋瑑墒较鄿p可得,,即由中點(diǎn)公式可得,所以,即,所以AB所在直線方程為,即故選:B2、D【解析】分析:根據(jù)題設(shè)條件,列出方程,求出,,的值,即可求得雙曲線得標(biāo)準(zhǔn)方程詳解:∵雙曲線的離心率為,其左焦點(diǎn)為∴,∴∵∴∴雙曲線的標(biāo)準(zhǔn)方程為故選D.點(diǎn)睛:本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,根據(jù)題設(shè)條件求出,,的值是解決本題的關(guān)鍵.3、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負(fù)數(shù)且最小或?yàn)檎龜?shù)且最大,進(jìn)而求出最大值.【詳解】①,當(dāng)時(shí),,當(dāng)時(shí),②,所以①-②得:,整理得:,所以,或,當(dāng)是公差為2的等差數(shù)列,且時(shí),最小,最大,此時(shí),所以,此時(shí);當(dāng)且是公差為2的等差數(shù)列時(shí),最大,最大,此時(shí),所以,此時(shí)綜上:的最大值為20故選:C【點(diǎn)睛】方法點(diǎn)睛:數(shù)列相關(guān)的最值求解,要結(jié)合題干條件,使用不等式放縮,函數(shù)單調(diào)性或?qū)Ш瘮?shù)等進(jìn)行求解.4、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.5、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因?yàn)閍,b為正實(shí)數(shù),且,所以.當(dāng)且僅當(dāng),即時(shí)取等號(hào).故選:D6、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對(duì)于A,由,求出,,,…,推斷:數(shù)列的前項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對(duì)于D,屬于歸納推理,但時(shí),結(jié)論不正確,故D不正確.故選:A.7、D【解析】根據(jù)題意轉(zhuǎn)化為對(duì)于且時(shí),都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時(shí),恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對(duì)于且都有成立,不妨設(shè),可得恒成立,即對(duì)于且時(shí),都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時(shí),恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實(shí)數(shù)取值范圍為.故選:D8、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)?,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿(mǎn)足的點(diǎn),屬于基礎(chǔ)題.9、A【解析】由已知可得,故選A.考點(diǎn):1、雙曲線及其方程;2、雙曲線的離心率.【方法點(diǎn)晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計(jì)算量,提高解題速度.10、B【解析】計(jì)算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級(jí)抽取的人數(shù)名.故選:B.11、B【解析】化簡(jiǎn)判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點(diǎn)P時(shí)最小,再計(jì)算求值即得結(jié)果.【詳解】化簡(jiǎn)得圓C的標(biāo)準(zhǔn)方程為,故圓心是,半徑,則連接線段OC,交圓于點(diǎn)P時(shí)最小,因?yàn)樵c(diǎn)到圓心的距離,故此時(shí).故選:B.12、C【解析】先計(jì)算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計(jì)算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個(gè)基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個(gè)基本事件,所以所求概率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過(guò)球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長(zhǎng),作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.14、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標(biāo)為(1,1,1)15、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;所以,即在上恒成立,令,則,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減;所以,綜上,.故答案為:116、【解析】根據(jù)遞推關(guān)系依次求得的值.【詳解】依題意數(shù)列滿(mǎn)足,,所以.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)連接EC,設(shè)EB與AC相交于點(diǎn)O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進(jìn)而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用空間向量求解即可【小問(wèn)1詳解】證明:連接EC,設(shè)EB與AC相交于點(diǎn)O,如圖,因?yàn)锽C//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點(diǎn),又因?yàn)镚為PB的中點(diǎn),所以O(shè)G為△PBE的中位線,即OG∥PE,因?yàn)镺G平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因?yàn)镋,F(xiàn)分別為線段AD,DC的中點(diǎn),所以EF//AC,因?yàn)锳C平面PEF,EF?平面PEF,所以AC//平面PEF,因?yàn)镺G?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因?yàn)镻F?平面PEF,所以PF//平面GAC.【小問(wèn)2詳解】因?yàn)镻A⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因?yàn)锳B⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.18、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出相關(guān)各點(diǎn)坐標(biāo),求出,利用向量的夾角公式求得答案;(2)求出平面平面和平面的一個(gè)法向量,利用向量夾角公式求得答案.【小問(wèn)1詳解】以為正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,所以,所以直線所成角的余弦值為;【小問(wèn)2詳解】設(shè)為平面的一個(gè)法向量,,則m?,同理,則,可取平面的一個(gè)法向量為,則,由圖可知二面角為銳角,所以二面角的余弦值為.19、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,以及弦長(zhǎng)公式,求得,,運(yùn)用菱形和橢圓的對(duì)稱(chēng)性可得,關(guān)于原點(diǎn)對(duì)稱(chēng),結(jié)合菱形的對(duì)角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長(zhǎng)為,運(yùn)用基本不等式,計(jì)算可得所求最大值【小問(wèn)1詳解】點(diǎn)在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點(diǎn)為中心,和為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問(wèn)2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡(jiǎn)可得,①,,,同理可得,因?yàn)樗倪呅螢榱庑危?,所以,又因?yàn)?,所以,所以,關(guān)于原點(diǎn)對(duì)稱(chēng),又橢圓關(guān)于原點(diǎn)對(duì)稱(chēng),所以,關(guān)于原點(diǎn)對(duì)稱(chēng),,也關(guān)于原點(diǎn)對(duì)稱(chēng),所以且,所以,,,,因?yàn)樗倪呅螢榱庑?,可得,即,即,即,可得,化?jiǎn)可得,設(shè)菱形的周長(zhǎng)為,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),滿(mǎn)足①,所以菱形的周長(zhǎng)的最大值為【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在處理此類(lèi)直線與橢圓相交問(wèn)題中,一般先設(shè)出直線方程,聯(lián)立方程,利用韋達(dá)定理得出,,再具體問(wèn)題具體分析,一般涉及弦長(zhǎng)計(jì)算問(wèn)題,運(yùn)算比較繁瑣,需要較強(qiáng)的運(yùn)算能力,屬于難題。20、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項(xiàng)公式,再根據(jù)列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)結(jié)合(1)可得,根據(jù)錯(cuò)位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因?yàn)?,,所以,即所以?)由(1)知,,因此從而數(shù)列的前項(xiàng)和,,,兩式作差可得,,解得.【點(diǎn)睛】本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫(xiě)出“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“”的表達(dá)式.21、(1).(2)10.【解析】(1)借助于將轉(zhuǎn)化為,進(jìn)而得到數(shù)列為等比數(shù)列,通過(guò)首項(xiàng)和公比求得通項(xiàng)公式;(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論