




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省衡水2023年高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知四棱錐,底面為平行四邊形,分別為,上的點,,設,則向量用為基底表示為()A. B.C. D.2.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.253.點到直線的距離為A.1 B.2C.3 D.44.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定5.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.6.已知向量,,且,則值是()A. B.C. D.7.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.8.雙曲線的焦點到漸近線的距離為()A. B.2C. D.9.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.10.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.11.已知點,和直線,若在坐標平面內(nèi)存在一點P,使,且點P到直線l的距離為2,則點P的坐標為()A.或 B.或C.或 D.或12.圓錐曲線具有豐富的光學性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.14.拋物線的焦點坐標為_____.15.拋物線的準線方程為_____16.為增強廣大師生生態(tài)文明意識,大力推進國家森林城市建設創(chuàng)建進程,某班26名同學在一段直線公路一側植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學們挖坑期間,運到的樹苗集中放置在了某一樹坑旁邊,然后每位同學挖好自己的樹坑后,均從各自樹坑出發(fā)去領取樹苗.記26位同學領取樹苗往返所走的路程總和為,則的最小值為______米三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)銳角中滿足,其中分別為內(nèi)角的對邊(I)求角;(II)若,求的取值范圍18.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調(diào)區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.19.(12分)已知拋物線的準線方程為(1)求C的方程;(2)直線與C交于A,B兩點,在C上是否存在點Q,使得直線QA,QB分別與y軸交于M,N兩點,且?若存在,求出點Q的坐標;若不存在,說明理由20.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.21.(12分)有三個條件:①數(shù)列的任意相鄰兩項均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個,補充在下面橫線上,并回答問題已知數(shù)列的前n項和為,______,求數(shù)列的通項公式和前n項和22.(10分)已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項公式;(2)若,設數(shù)列的前項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】通過尋找封閉的三角形,將相關向量一步步用基底表示即可.【詳解】.故選:D2、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A3、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.4、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當時,,當時,.∴當時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.5、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.6、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.7、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.8、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A9、D【解析】根據(jù)圓的割線定理,結合圓的性質(zhì)進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D10、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎題.11、C【解析】設點的坐標為,根據(jù),點到直線的距離為,聯(lián)立方程組即可求解.【詳解】解:設點的坐標為,線段的中點的坐標為,,∴的垂直平分線方程為,即,∵點在直線上,∴,又點到直線:的距離為,∴,即,聯(lián)立可得、或、,∴所求點的坐標為或,故選:C12、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①②【解析】假設與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.14、【解析】根據(jù)拋物線方程求得p,則根據(jù)拋物線性質(zhì)可求得拋物線的焦點坐標.解:拋物線方程中p=2,∴拋物線焦點坐標為(-1,0)故填寫考點:拋物線的簡單性質(zhì)點評:本題主要考查了拋物線的簡單性質(zhì).屬基礎題15、【解析】本題利用拋物線的標準方程得出拋物線的準線方程【詳解】由拋物線方程可知,拋物線的準線方程為:故答案為【點睛】本題考查拋物線的相關性質(zhì),主要考查拋物線的簡單性質(zhì)的應用,考查拋物線的準線的確定,是基礎題16、【解析】根據(jù)對稱性易知:當樹苗放在第13或14個坑,26位同學領取樹苗往返所走的路程總和最小,再應用等差數(shù)列前n項和的求法求26位同學領取樹苗往返所走的路程總和.【詳解】將26個同學對應的26個坑分左右各13個坑,∴根據(jù)對稱性:樹苗放在左邊13個坑,與放在對稱右邊的13個坑,26個同學所走的總路程對應相等,∴當樹苗放在第13個坑,26位同學領取樹苗往返所走的路程總和最小,此時,左邊13位同學所走的路程分別為,右邊13位同學所走的路程分別為,∴最小值為米.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I);(II)【解析】(I)由正弦定理邊角互化并整理得,進而由余弦定理得;(II)正弦定理得,故,再根據(jù)三角恒等變換得,由于銳角中,,進而根據(jù)三角函數(shù)性質(zhì)求得答案.【詳解】解:(I)由正弦定理得所以,即,所以,因為銳角中,,所以;(II)因為,,所以所以,因為,所以,所以,所以,所以18、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導函數(shù),分與進行討論,得函數(shù)的單調(diào)性進而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當時,單調(diào)遞增,得的最大值是,解得,舍去;②時,由,即,當,即時,∴時,;時,;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當,即時,在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應用,還考查了函數(shù)的最值求解與分類討論的應用,解題時要認真審題,注意挖掘題設中的條件.19、(1)(2)見解析【解析】(1)根據(jù)準線方程得出拋物線方程;(2)聯(lián)立直線和拋物線方程,由韋達定理結合求解即可.【小問1詳解】【小問2詳解】設,聯(lián)立,得由,得,假設C上存在點Q,使得直,則又即存在點滿足條件.20、(1),△的面積為;(2).【解析】(1)應用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關系可得,即可求目標式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.21、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據(jù)任意相鄰兩項均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,【詳解】解:選①:因為,數(shù)列為常數(shù)列,所以,解得或,又因為數(shù)列的任意相鄰兩項均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項,公比為-1的等比數(shù)列,所以,即;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防火隊員考核方案范本
- 云南德宏小木屋施工方案
- 銀行從業(yè)資格證話題探討試題及答案
- 深入分析2025年國際金融理財師考試中投資決策的要點試題及答案
- 2025年新思路的證券從業(yè)資格考試試題及答案
- 微生物檢驗技師證書考試全景分析試題及答案
- 參與討論2025年特許金融分析師考試試題及答案
- 2024項目管理案例分析試題及答案
- 微生物檢測在新興傳染病中的應用試題及答案
- 上堤路欄桿施工方案
- 核心素養(yǎng)視角下的小學科學單元整體教學設計培訓講座
- uni-app移動應用開發(fā)課件 1-初識uni-app
- DB11-T 1764.24-2022 用水定額 第24部分:印刷品
- 自動扶梯-自動人行道安裝施工作業(yè)指導書
- 年處理12萬噸焦油焦油車間蒸餾工段初步設計
- 包裝飲用水行業(yè)研究報告
- 2025年碼頭安全生產(chǎn)管理制度(5篇)
- 《汽車用改性聚丙烯車門外板編制說明》
- 華南理工大學自主招生個人陳述自薦信范文
- 【政治】做中華傳統(tǒng)美德的踐行者課件-+2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 機電傳動與控制知到智慧樹章節(jié)測試課后答案2024年秋山東石油化工學院
評論
0/150
提交評論