廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁(yè)
廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁(yè)
廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁(yè)
廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁(yè)
廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省執(zhí)信中學(xué)、廣州二中、廣州六中、廣雅中學(xué)四校2023年數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),則()A.1 B.5C. D.02.空氣質(zhì)量指數(shù)大小分為五級(jí)指數(shù)越大說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大,指數(shù)范圍在:,,,,分別對(duì)應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個(gè)等級(jí),如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢(shì)圖,下面說(shuō)法錯(cuò)誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來(lái)越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日3.把點(diǎn)隨機(jī)投入長(zhǎng)為,寬為的矩形內(nèi),則點(diǎn)與矩形四邊的距離均不小于的概率為()A. B.C. D.4.命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)為()A.0 B.2C.3 D.45.已知四棱柱ABCD-A1B1C1D1的底面是邊長(zhǎng)為2的正方形,側(cè)棱與底面垂直,若點(diǎn)C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.6.命題“,”的否定是()A., B.,C., D.,7.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.8.已知圓與圓,則圓M與圓N的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離9.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.10.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.11.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點(diǎn)圖 B.條形圖C.莖葉圖 D.扇形圖12.2021年6月17日9時(shí)22分,搭載神舟十二號(hào)載人飛船的長(zhǎng)征二號(hào)F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號(hào)載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對(duì)接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號(hào)飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.容積為V圓柱形密封金屬飲料罐,它的高與底面半徑比值為___________時(shí)用料最省.14.已知點(diǎn),為拋物線:上不同于原點(diǎn)的兩點(diǎn),且,則的面積的最小值為__________.15.已知正項(xiàng)等比數(shù)列的前n項(xiàng)和為,且,則的最小值為_________16.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布(),若ξ在內(nèi)取值的概率為0.4,則ξ在內(nèi)取值的概率為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:的離心率為,點(diǎn)和點(diǎn)都在橢圓C上,直線PA交x軸于點(diǎn)M(1)求橢圓C的方程,并求點(diǎn)M的坐標(biāo)(用m,n表示);(2)設(shè)O為原點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,直線PB交x軸于點(diǎn)N,問(wèn):y軸上是否存在點(diǎn)Q(不與O重合),使得?若存在,求點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由18.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.19.(12分)已知向量,.(1)計(jì)算和;(2)求.20.(12分)已知等差數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知橢圓與直線相切,點(diǎn)G為橢圓上任意一點(diǎn),,,且的最大值為3(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同兩點(diǎn)E,F(xiàn),點(diǎn)O為坐標(biāo)原點(diǎn),且,當(dāng)?shù)拿娣e取最大值時(shí),求的取值范圍22.(10分)已知橢圓:經(jīng)過(guò)點(diǎn)為,且.(1)求橢圓的方程;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).已知點(diǎn),且,求此時(shí)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.2、C【解析】根據(jù)題圖分析數(shù)據(jù),對(duì)選項(xiàng)逐一判斷【詳解】對(duì)于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對(duì)于B,從2日到5日空氣質(zhì)量指數(shù)越來(lái)越高,故空氣質(zhì)量越來(lái)越差,故B正確對(duì)于C,14個(gè)數(shù)據(jù)中位數(shù)為:,故C錯(cuò)誤對(duì)于D,觀察折線圖可知D正確故選:C3、A【解析】確定矩形四邊的距離均不小于的點(diǎn)構(gòu)成的區(qū)域,由幾何概型面積型的公式計(jì)算可得結(jié)果.【詳解】若點(diǎn)與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內(nèi),所求概率.故選:A.4、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據(jù)互為逆否命題的兩個(gè)命題同真假,即可判斷;【詳解】解:因?yàn)槊}“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個(gè)命題中,真命題有4個(gè);故選:D5、A【解析】先由等面積法求得的長(zhǎng),再以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,運(yùn)用線面角的向量求解方法可得答案【詳解】如圖,連接交于點(diǎn),過(guò)點(diǎn)作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:6、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D7、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A8、B【解析】將兩圓方程化為標(biāo)準(zhǔn)方程形式,計(jì)算圓心距,和兩圓半徑的和差比較,可得答案,【詳解】圓,即,圓心,圓,即,圓心,則故有,所以兩圓是相交的關(guān)系,故選:B9、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A10、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.11、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計(jì)圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來(lái),并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢(shì);散點(diǎn)圖表示因變量隨自變量而變化的大致趨勢(shì),故用來(lái)描述該超市近10天的日客流量不是很合適;故選:A12、A【解析】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)圓柱的底面半徑為,高為,容積為,由,得到,進(jìn)而求得表面積,結(jié)合不等式,即可求解.【詳解】設(shè)圓柱的底面半徑為,高為,容積為,則,即有,可得圓柱的表面積為,當(dāng)且僅當(dāng)時(shí),即時(shí)最小,即用料最省,此時(shí),可得.故答案為:.14、【解析】設(shè),,利用可得即可求得,利用兩點(diǎn)間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的面積的最小值為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.15、16【解析】根據(jù)是等比數(shù)列,由,即可得也是等比數(shù)列,結(jié)合基本不等式的性質(zhì)即可求出的最小值.【詳解】是等比數(shù)列,,即,也是等比數(shù)列,且,,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為16.故答案為:1616、4##【解析】根據(jù)正態(tài)分布曲線的對(duì)稱性求解【詳解】因?yàn)棣畏恼龖B(tài)分布(),即正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,可知ξ在與取值的概率相同,所以ξ在內(nèi)取值的概率為0.4.故答案為:0.4三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)存在或,使得,理由見(jiàn)解析.【解析】(1)根據(jù)離心率,及求出,,進(jìn)而得到橢圓方程及用m,n表示點(diǎn)M的坐標(biāo);(2)假設(shè)存在,根據(jù)得到,表達(dá)出點(diǎn)坐標(biāo),得到,結(jié)合得到,從而求出答案.【小問(wèn)1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問(wèn)2詳解】存在或,使得,理由如下:假設(shè),使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或18、(1)證明過(guò)程見(jiàn)解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問(wèn)1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)?,,為的中點(diǎn),所以,,而,因?yàn)?,所以,而平面,所以平面;【小?wèn)2詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.19、(1),;(2).【解析】(1)利用空間向量的坐標(biāo)運(yùn)算可求得的坐標(biāo),利用向量的模長(zhǎng)公式可求得的值;(2)計(jì)算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點(diǎn)睛】本題考查空間向量的坐標(biāo)運(yùn)算,同時(shí)也考查了利用空間向量的數(shù)量積計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個(gè)量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問(wèn)2詳解】解:,因此,.21、(1)(2)【解析】(1)設(shè)點(diǎn),根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標(biāo)表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設(shè),,,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理,由弦長(zhǎng)公式,以及點(diǎn)到直線距離公式,求出的面積的最值,得到;得出點(diǎn)的軌跡為橢圓,且點(diǎn)為橢圓的左、右焦點(diǎn),記,則,得到,根據(jù)對(duì)勾函數(shù)求出最值.【小問(wèn)1詳解】設(shè)點(diǎn),由題意知,所以:,則,當(dāng)時(shí),取得最大值,即,故橢圓C的標(biāo)準(zhǔn)方程是【小問(wèn)2詳解】設(shè),,,則由得,,點(diǎn)O到直線l的距離

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論