版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市北方交通大學(xué)附屬中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其意思為:有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問(wèn)第二天走了()A.192
里 B.96
里C.48
里 D.24
里2.已知一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時(shí)速度為()A. B.C. D.3.已知向量,,且,,,則一定共線的三點(diǎn)是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D4.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種5.已知是雙曲線的左、右焦點(diǎn),點(diǎn)P在C上,,則等于()A.2 B.4C.6 D.86.設(shè)橢圓()的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F且斜率為的直線與C的一個(gè)交點(diǎn)為Q(點(diǎn)Q在x軸上方),且,則C的離心率為()A. B.C. D.7.已知,,則下列結(jié)論一定成立的是()A. B.C. D.8.魯班鎖運(yùn)用了中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時(shí)代各國(guó)工匠魯班所作,是由六根內(nèi)部有槽的長(zhǎng)方形木條,按橫豎立三方向各兩根凹凸相對(duì)咬合一起,形成的一個(gè)內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類(lèi)各式各樣,千奇百怪.其中以最常見(jiàn)的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個(gè)構(gòu)件的圖片,下圖2是其中的一個(gè)構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.9.已知實(shí)數(shù)x,y滿足,則的最大值為()A. B.C.2 D.110.若直線過(guò)點(diǎn)(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°11.已知拋物線=的焦點(diǎn)為F,M、N是拋物線上兩個(gè)不同的點(diǎn),若,則線段MN的中點(diǎn)到y(tǒng)軸的距離為()A.8 B.4C. D.912.記為等差數(shù)列的前項(xiàng)和.若,,則的公差為()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中的系數(shù)是___________.14.六面體的所有棱長(zhǎng)都為2,底面ABCD是正方形,AC與BD的交點(diǎn)是O,若,則___________.15.已知兩點(diǎn)和則以為直徑的圓的標(biāo)準(zhǔn)方程是__________.16.已知拋物線C:的焦點(diǎn)為F,過(guò)M(4,0)的直線交C于A、B兩點(diǎn),設(shè),的面積分別為、,則的最小值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和為.18.(12分)已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度19.(12分)已知橢圓的上一點(diǎn)處的切線方程為,橢圓C上的點(diǎn)與其右焦點(diǎn)F的最短距離為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P為直線上任一點(diǎn),過(guò)P作橢圓的兩條切線PA,PB,切點(diǎn)為A,B,求證:20.(12分)已知橢圓()與橢圓的焦點(diǎn)相同,且橢圓C過(guò)點(diǎn)(1)求橢圓C的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)A,B,且,(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,說(shuō)明理由;(3)P是橢圓C上異于上頂點(diǎn),下頂點(diǎn)的任一點(diǎn),直線,,分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T(mén).證明:線段OT的長(zhǎng)為定值,并求出該定值21.(12分)在△中,已知、、分別是三內(nèi)角、、所對(duì)應(yīng)的邊長(zhǎng),且(Ⅰ)求角的大小;(Ⅱ)若,且△的面積為,求.22.(10分)已知函數(shù),且在處取得極值.(1)求的值;(2)當(dāng),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項(xiàng)可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B2、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點(diǎn)在第1秒末的瞬時(shí)速度為.故選:C3、A【解析】由已知,分別表示出選項(xiàng)對(duì)應(yīng)的向量,然后利用平面向量共線定理進(jìn)行判斷即可完成求解.【詳解】因,,,選項(xiàng)A,,,若A,B,D三點(diǎn)共線,則,即,解得,故該選項(xiàng)正確;選項(xiàng)B,,,若A,B,C三點(diǎn)共線,則,即,解得不存,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,,,若B,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,,,若A,C,D三點(diǎn)共線,則,即,解得不存在,故該選項(xiàng)錯(cuò)誤;故選:A.4、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問(wèn)題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.5、D【解析】根據(jù)雙曲線定義寫(xiě)出,兩邊平方代入焦點(diǎn)三角形的余弦定理中即可求解【詳解】雙曲線,,所以,根據(jù)雙曲線的對(duì)稱(chēng)性,可假設(shè)在第一象限,設(shè),則,所以,,在中,根據(jù)余弦定理:,即,解得:,所以故選:D6、D【解析】連接Q和右焦點(diǎn),可知|OQ|=,可得∠FQ=90°,由得,寫(xiě)出兩直線方程,聯(lián)立可得Q點(diǎn)坐標(biāo),Q點(diǎn)坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點(diǎn)為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過(guò)F(-c,0),Q過(guò)(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D7、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因?yàn)椋?,又,所?故選:B.8、B【解析】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,如下圖所示,其表面積為:.故選:B.【點(diǎn)睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.9、A【解析】作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當(dāng)直線過(guò)直線的交點(diǎn)時(shí)取最大值,即故選:10、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以?xún)A斜角為故選:A11、B【解析】過(guò)分別作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,再過(guò)MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點(diǎn),準(zhǔn)線方程為直線如圖,過(guò)分別作垂直于準(zhǔn)線,垂足為,過(guò)MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,因?yàn)?,所以,因?yàn)槭翘菪蔚闹形痪€,所以,所以線段MN的中點(diǎn)到y(tǒng)軸的距離為4,故選:B12、C【解析】根據(jù)等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式利用條件,列出關(guān)于與的方程組,通過(guò)解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)展開(kāi)式的通項(xiàng)公式,可知展開(kāi)式中含的項(xiàng),以及展開(kāi)式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開(kāi)式中含的項(xiàng)為,而展開(kāi)式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.14、【解析】結(jié)合空間向量運(yùn)算求得.【詳解】,.所以.故答案為:15、【解析】根據(jù)的中點(diǎn)是圓心,是半徑,即可寫(xiě)出圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)楹?,故可得中點(diǎn)為,又,故所求圓的半徑為,則所求圓的標(biāo)準(zhǔn)方程是:.故答案為:.16、【解析】設(shè)直線的方程為,,與拋物線的方程聯(lián)立整理得,由三角形的面積公式求得,再根據(jù)基本不等式可得答案.【詳解】解:由拋物線C:得焦點(diǎn),又直線交C于A、B兩點(diǎn),所以直線的斜率不為0,則設(shè)直線的方程為,,聯(lián)立,整理得,則,又,,所以,又,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)利用可求得結(jié)果;(2)由(1)可得,利用裂項(xiàng)相消法可求得結(jié)果.【小問(wèn)1詳解】當(dāng)時(shí),;當(dāng)時(shí),,;經(jīng)檢驗(yàn):滿足;綜上所述:.【小問(wèn)2詳解】由(1)得:,.18、(1);(2)【解析】(1)由焦點(diǎn)坐標(biāo)可求c值,a值,然后可求出b的值.進(jìn)而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達(dá)定理及弦長(zhǎng)公式求出|AB|的長(zhǎng)度【詳解】解:⑴由,長(zhǎng)軸長(zhǎng)為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡(jiǎn)并整理得所以又【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考查運(yùn)算能力,屬于中檔題19、(1)(2)證明見(jiàn)解析【解析】(1)設(shè)為橢圓上的點(diǎn),為橢圓的右焦點(diǎn),求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點(diǎn)的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問(wèn)1詳解】解:設(shè)為橢圓上的點(diǎn),為橢圓的右焦點(diǎn),因?yàn)?,所以,又,所以?dāng)且僅當(dāng)時(shí),,因?yàn)?,所以,,因?yàn)?,所以,故橢圓的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】解:由(1)知,設(shè),,,,,所以,由題知,以為切點(diǎn)的橢圓切線方程為,以為切點(diǎn)的橢圓切線方程為,又點(diǎn)在直線、上,所以、,所以直線的方程為,當(dāng)時(shí),直線的斜率不存在,直線斜率為,所以,當(dāng)時(shí),,所以,所以,綜上可得;20、(1);(2)存在,;(3)證明見(jiàn)解析,定值2【解析】(1)根據(jù)已知條件,用待定系數(shù)解方程組即可得到C的方程;(2)設(shè)出AB的方程,與橢圓方程聯(lián)立,得到根與系數(shù)關(guān)系,代入由確定方程內(nèi)即可得到結(jié)果;(3)設(shè)P點(diǎn)坐標(biāo),求出M和N坐標(biāo),設(shè)出圓G的圓心坐標(biāo),求得圓的半徑,由垂徑定理求得切線長(zhǎng)|OT|,結(jié)合P在橢圓上可證|OT|為定值﹒【小問(wèn)1詳解】設(shè)橢圓C的方程為將點(diǎn)代入橢圓方程有點(diǎn)解得,(舍)∴橢圓的方程為;【小問(wèn)2詳解】設(shè),當(dāng)AB斜率存在時(shí),設(shè),代入,整理得,由得,即,由韋達(dá)定理化簡(jiǎn)得,即,設(shè)存在圓與直線相切,則,解得,∴圓的方程為;又若AB斜率不存在時(shí),檢驗(yàn)知滿足條件,故存在圓心在原點(diǎn)的圓符合題意;【小問(wèn)3詳解】如圖:,,設(shè),直線,令,得;直線,令,得;解法一:設(shè)圓G的圓心為,則,,,而,∴,∴,∴,即線段OT長(zhǎng)度為定值2解法二:,而,∴,∴由切割線定理得.∴,即線段OT的長(zhǎng)度為定值221、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到關(guān)于角A的關(guān)系式,求解A(II)再結(jié)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學(xué)《全媒體新聞寫(xiě)作與編輯》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《辦公室空間設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)幼兒師范高等專(zhuān)科學(xué)?!陡叻肿硬牧戏治鰷y(cè)試與研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025黑龍江省安全員考試題庫(kù)
- 貴陽(yáng)信息科技學(xué)院《現(xiàn)代基礎(chǔ)醫(yī)學(xué)概論Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《社會(huì)網(wǎng)絡(luò)分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)學(xué)院《微生物基因工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年安徽建筑安全員-A證考試題庫(kù)附答案
- 廣州新華學(xué)院《學(xué)術(shù)規(guī)范與科技論文寫(xiě)作車(chē)輛》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《語(yǔ)文課堂教學(xué)技能與微格訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 人教版高一化學(xué)方程式大全
- JBT 7048-2011 滾動(dòng)軸承 工程塑料保持架 技術(shù)條件
- Pre-IPO階段融資策略研究
- 陶藝校本課程實(shí)施方案(教學(xué)資料)
- 2024年山東省機(jī)場(chǎng)管理集團(tuán)威海國(guó)際機(jī)場(chǎng)有限公司招聘筆試參考題庫(kù)含答案解析
- 國(guó)際貨物運(yùn)輸委托代理合同(中英文對(duì)照)全套
- 銀行反恐應(yīng)急預(yù)案及方案
- 關(guān)于推某某同志擔(dān)任教育系統(tǒng)實(shí)職領(lǐng)導(dǎo)職務(wù)的報(bào)告(職務(wù)晉升)
- 2023消防安全知識(shí)培訓(xùn)
- Exchange配置與規(guī)劃方案專(zhuān)項(xiàng)方案V
- 三年級(jí)上冊(cè)脫式計(jì)算練習(xí)200題及答案
評(píng)論
0/150
提交評(píng)論