版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省南平市建甌市芝華中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線和互相平行,則實(shí)數(shù)的取值為()A或3 B.C. D.1或2.用數(shù)學(xué)歸納法證明“”時,由假設(shè)證明時,不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.3.橢圓的一個焦點(diǎn)坐標(biāo)為,則()A.2 B.3C.4 D.84.已知向量,,且,則實(shí)數(shù)等于()A.1 B.2C. D.5.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.86.曲線與曲線的()A.實(shí)軸長相等 B.虛軸長相等C.焦距相等 D.漸進(jìn)線相同7.命題“,”的否定是()A., B.,C, D.,8.如圖所示幾何體的正視圖和側(cè)視圖都正確的是()A. B.C. D.9.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則10.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確11.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A B.4C.3 D.212.直線的傾斜角為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩隊(duì)進(jìn)行籃球決賽,采取七場四勝制(當(dāng)一隊(duì)贏得四場勝利時,該隊(duì)獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊(duì)的主客場安排依次為“主主客客主客主”.設(shè)甲隊(duì)主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨(dú)立,則甲隊(duì)以4∶1獲勝的概率是____________14.設(shè),向量,,,且,,則___________.15.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.16.已知函數(shù),若有兩個零點(diǎn),則的范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線C:(a>0,b>0)的離心率為,且雙曲線的實(shí)軸長為2(1)求雙曲線C的方程;(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)在圓x2+y2=17上,求m的值18.(12分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過左焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),的周長為8(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)如圖,,是橢圓C的短軸端點(diǎn),P是橢圓C上異于點(diǎn),的動點(diǎn),點(diǎn)Q滿足,,求證與的面積之比為定值19.(12分)已知展開式中,第三項(xiàng)的系數(shù)與第四項(xiàng)的系數(shù)相等(1)求n的值;(2)求展開式中有理項(xiàng)的系數(shù)之和(用數(shù)字作答)20.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點(diǎn).(1)證明:平面;(2)設(shè),菱形的面積為,求二面角的余弦值.21.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點(diǎn)的一個動點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓C的上頂點(diǎn),Q為PA的中點(diǎn),且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點(diǎn)F的直線l與橢圓C相交于M,N兩點(diǎn),當(dāng)點(diǎn)M,N到y(tǒng)軸距離之和最大時,求直線l的方程.22.(10分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過原點(diǎn),試問是否存在定點(diǎn),使得到直線的距離為定值?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用兩直線平行的等價條件求得實(shí)數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點(diǎn)睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,2、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時,寫出對應(yīng)的關(guān)系式,觀察計算即可【詳解】從到成立時,左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C3、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點(diǎn)坐標(biāo)為,∴,又,∴,∴,故選:D.4、C【解析】利用空間向量垂直的坐標(biāo)表示計算即可得解【詳解】因向量,,且,則,解得,所以實(shí)數(shù)等于.故選:C5、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】,因?yàn)椴坏仁胶愠闪?,所以,即,解得,所?故選:B.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.6、D【解析】將曲線化為標(biāo)準(zhǔn)方程后即可求解.【詳解】化為標(biāo)準(zhǔn)方程為,由于,則兩曲線實(shí)軸長、虛軸長、焦距均不相等,而漸近線方程同為.故選:7、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.8、B【解析】根據(jù)側(cè)視圖,沒有實(shí)對角線,正視圖實(shí)對角線的方向,排除錯誤選項(xiàng),得到答案.【詳解】側(cè)視時,看到一個矩形且不能有實(shí)對角線,故A,D排除而正視時,有半個平面是沒有的,所以應(yīng)該有一條實(shí)對角線,且其對角線位置應(yīng)從左上角畫到右下角,故C排除.故選:B.9、B【解析】根據(jù)線線,線面,面面位置關(guān)系的判定方法即可逐項(xiàng)判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.10、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.11、C【解析】化簡復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由為純虛數(shù),∴,解得:,則,故選:C12、B【解析】分析出直線與軸垂直,據(jù)此可得出該直線的傾斜角.【詳解】由題意可知,直線與軸垂直,該直線的傾斜角為.故選:B.【點(diǎn)睛】本題考查直線的傾斜角,關(guān)鍵是掌握直線傾斜角的定義,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】本題應(yīng)注意分情況討論,即前五場甲隊(duì)獲勝的兩種情況,應(yīng)用獨(dú)立事件的概率的計算公式求解.題目有一定的難度,注重了基礎(chǔ)知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊(duì)以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊(duì)以獲勝的概率是綜上所述,甲隊(duì)以獲勝的概率是【點(diǎn)睛】由于本題題干較長,所以,易錯點(diǎn)之一就是能否靜心讀題,正確理解題意;易錯點(diǎn)之二是思維的全面性是否具備,要考慮甲隊(duì)以獲勝的兩種情況;易錯點(diǎn)之三是是否能夠準(zhǔn)確計算14、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運(yùn)算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:15、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3416、【解析】利用導(dǎo)數(shù)求出函數(shù)的最小值,結(jié)合函數(shù)的圖象列式可求出結(jié)果.【詳解】,當(dāng)時,,在上為增函數(shù),最多只有一個零點(diǎn),不符合題意;當(dāng)時,令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時取得極小值為,也是最小值,因?yàn)楫?dāng)趨近于正負(fù)無窮時,都是趨近于正無窮,所以要使有兩個零點(diǎn),只要,即就可以了.所以的范圍是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由實(shí)軸長求得,再由離心率得,從而求得得雙曲線方程;(2)直線方程與雙曲線方程聯(lián)立方程組,消元后應(yīng)用韋達(dá)定理求得中點(diǎn)坐標(biāo),代入圓方程可求得值【小問1詳解】由已知,,又,所以,,所以雙曲線方程為;【小問2詳解】由,得,恒成立,設(shè),,中點(diǎn)為,所以,,,又在圓x2+y2=17上,所以,18、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標(biāo),根據(jù)在橢圓上,得到,然后代入Q的橫坐標(biāo)求解;方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,直線的方程為,與橢圓方程聯(lián)立,求得點(diǎn)P橫坐標(biāo),再由的直線方程聯(lián)立,得到P,Q的橫坐標(biāo)的關(guān)系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點(diǎn),的點(diǎn),∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值419、(1)8;(2).【解析】(1)由題設(shè)可得,進(jìn)而寫出第三、四項(xiàng)的系數(shù),結(jié)合已知列方程求n值即可.(2)由(1)有,確定有理項(xiàng)的對應(yīng)k值,進(jìn)而求得對應(yīng)項(xiàng)的系數(shù),即可得結(jié)果.小問1詳解】由題意,二項(xiàng)式展開式的通項(xiàng)公式所以第三項(xiàng)系數(shù)為,第四項(xiàng)系數(shù)為,由,解得,即n的值為8【小問2詳解】由(1)知:當(dāng),3,6時,對應(yīng)的是有理項(xiàng)當(dāng)時,展開式中對應(yīng)的有理項(xiàng)為;當(dāng)時,展開式中對應(yīng)的有理項(xiàng)為;當(dāng)時,展開式中對應(yīng)的有理項(xiàng)為;故展開式中有理項(xiàng)的系數(shù)之和為20、(1)證明見解析;(2).【解析】(1)連接交于點(diǎn),連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長,取中點(diǎn),可證,如圖建系,求得點(diǎn)坐標(biāo)及坐標(biāo),即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點(diǎn),連接,則、E分別為、的中點(diǎn),所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長為,取中點(diǎn),連接,因?yàn)?,所以,以點(diǎn)為原點(diǎn),以方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立如圖所示坐標(biāo)系.則所以設(shè)平面的法向量,由得,令,則所以一個法向量,因?yàn)椋?,所以平面PAD,所以平面的一個法向量所以,又二面角為銳二面角,所以二面角的余弦值為【點(diǎn)睛】解題的關(guān)鍵是熟練掌握證明平行的定理,證明線面平行時,常用中位線法和平行四邊形法來證明;利用空間向量求解二面角為??碱}型,步驟為建系、求點(diǎn)坐標(biāo)、求所需向量坐標(biāo)、求法向量、利用夾角公式求解,屬基礎(chǔ)題.21、(1)(2)【解析】(1)設(shè)點(diǎn),求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設(shè)點(diǎn),∵Q為的中點(diǎn),∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時等號成立,所以當(dāng)時取得最大值,此時直線l的方程為.22、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融幫扶框架協(xié)議書
- 律師委托代理協(xié)議包干
- 2025版?zhèn)€人獨(dú)資企業(yè)股權(quán)置換及轉(zhuǎn)讓合同范本2篇
- 2025版二手房買賣退房條件協(xié)議書
- 2025-2030全球液體金合歡烯橡膠行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球變頻用移相變壓器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球國防輕型戰(zhàn)術(shù)車輛行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球高性能碳纖維材料行業(yè)調(diào)研及趨勢分析報告
- 食堂炊事員聘用協(xié)議范本
- 2025年度個人自有房產(chǎn)租賃轉(zhuǎn)租委托協(xié)議3篇
- 電纜擠塑操作手冊
- 浙江寧波鄞州區(qū)市級名校2025屆中考生物全真模擬試卷含解析
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測數(shù)學(xué)三年級第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- IATF16949基礎(chǔ)知識培訓(xùn)教材
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)知能訓(xùn)練與指導(dǎo)-西北農(nóng)林科技大學(xué) 中國大學(xué)慕課MOOC答案
- 勞務(wù)派遣公司員工考核方案
- 基礎(chǔ)生態(tài)學(xué)-7種內(nèi)種間關(guān)系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術(shù)》課件 第3講 阻燃基本理論
- 2024-2030年中國黃鱔市市場供需現(xiàn)狀與營銷渠道分析報告
- 新人教版九年級化學(xué)第三單元復(fù)習(xí)課件
評論
0/150
提交評論