2024屆浙東北聯(lián)盟 數(shù)學高二上期末監(jiān)測模擬試題含解析_第1頁
2024屆浙東北聯(lián)盟 數(shù)學高二上期末監(jiān)測模擬試題含解析_第2頁
2024屆浙東北聯(lián)盟 數(shù)學高二上期末監(jiān)測模擬試題含解析_第3頁
2024屆浙東北聯(lián)盟 數(shù)學高二上期末監(jiān)測模擬試題含解析_第4頁
2024屆浙東北聯(lián)盟 數(shù)學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙東北聯(lián)盟數(shù)學高二上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“直線:與直線:平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.設,則的一個必要不充分條件為()A. B.C. D.3.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°4.小明騎車上學,開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.5.在長方體中,()A. B.C. D.6.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.7.已知為等差數(shù)列,且,,則()A. B.C. D.8.若數(shù)列等差數(shù)列,a1=1,,則a5=()A. B.C. D.9.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.10.關于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列11.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.1612.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內有零點”的必要不充分條件D.已知,且,則的最小值為9二、填空題:本題共4小題,每小題5分,共20分。13.已知點,平面過原點,且垂直于向量,則點到平面的距離是_________.14.函數(shù)極值點的個數(shù)是______15.若命題P:對于任意,使不等式為真命題,則實數(shù)的取值范圍是___________.16.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.18.(12分)已知函數(shù)(其中為自然對數(shù)底數(shù))(1)討論函數(shù)的單調性;(2)當時,若恒成立,求實數(shù)的取值范圍.19.(12分)奮發(fā)學習小組共有3名學生,在某次探究活動中,他們每人上交了1份作業(yè),現(xiàn)各自從這3份作業(yè)中隨機地取出了一份作業(yè).(1)每個學生恰好取到自己作業(yè)的概率是多少?(2)每個學生不都取到自己作業(yè)的概率是多少?(3)每個學生取到的都不是自己作業(yè)的概率是多少?20.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項和;(2)若以數(shù)列中的相鄰兩項,構造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同21.(12分)已知橢圓的中心在原點,對稱軸為坐標軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.22.(10分)在數(shù)列中,,,記.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式;(2)試判斷數(shù)列的增減性,并說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)兩直線平行求得的值,由此確定充分、必要條件.【詳解】由于,所以,當時,兩直線重合,不符合題意,所以.所以“”是“直線:與直線:平行”的充要條件.故選:C2、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.3、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B4、C【解析】先研究四個選項中圖象的特征,再對照小明上學路上的運動特征,兩者對應即可選出正確選項.【詳解】考查四個選項,橫坐標表示時間,縱坐標表示的是離開學校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學,開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關鍵是理解坐標系的度量與小明上學的運動特征,屬于基礎題.5、D【解析】根據(jù)向量的運算法則得到,帶入化簡得到答案.【詳解】在長方體中,易知,所以.故選:D.6、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D7、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設等差數(shù)列的公差為,由,,得,解得,所以,故選:B8、B【解析】令、可得等差數(shù)列的首項和第三項,即可求出第五項,從而求出.【詳解】令得,令得,所以數(shù)列的公差為,所以,解得,故選:B.9、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質可得當時,弦長最小,當過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D10、B【解析】根據(jù)給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B11、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當時,,使的正整數(shù)n的最大值為,故選:C12、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內有零點”,則,解得:或,所以“”是“函數(shù)在內有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】確定,,利用點到平面的距離為,即可求得結論.【詳解】由題意,,,設與的夾角為,則所以點到平面的距離為故答案為:14、0【解析】通過導數(shù)判斷函數(shù)的單調性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.15、【解析】根據(jù)題意,結合指數(shù)函數(shù)不等式,將原問題轉化為關于的不等式,對于任意恒成立,即可求解.【詳解】根據(jù)題意,知對于任意,恒成立,即,化簡得,令,,則恒成立,即,解得,故.故答案為:.16、【解析】由題意得:考點:等差數(shù)列通項三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結合二次函數(shù)的性質求解.【小問1詳解】解:設數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當時,取得最小值-16.18、(1)答案見解析(2)【解析】(1),進而分,,三種情況討論求解即可;(2)由題意知在上恒成立,故令,再根據(jù)導數(shù)研究函數(shù)的最小值,注意到使,進而結合函數(shù)隱零點求解即可.【小問1詳解】解:①,在上單調增;②,令,單調減單調增;③,單調增單調減.綜上,當時,在上單調增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞增,在上單調遞減.【小問2詳解】解:由題意知在上恒成立,令,,單調遞增∵,∴使得,即單調遞減;單調遞增,令,則在上單調增,∴實數(shù)的取值范圍是19、(1)(2)(3)【解析】(1)根據(jù)列舉法列出所有的可能基本事件,進而得出每個學生恰好拿到自己作業(yè)的概率;(2)利用對立事件的概念即可求得結果;(3)結合(1)即可得出每個學生拿的都不是自己作業(yè)的事件數(shù).【小問1詳解】設這三個學生分別為A、B、C,A的作業(yè)為a,B的作業(yè)為b,C的作業(yè)為c,則基本事件為:,則基本事件總數(shù)為6,設每個學生恰好拿到自己作業(yè)為事件E,事件E包含的事件數(shù)為l,所以;小問2詳解】設每個學生不都拿到自己作業(yè)為事件F,因為事件F的對立事件為E,所以;【小問3詳解】設每個學生拿的都不是自己作業(yè)為事件G,事件G包含的事件數(shù)為2,.20、(1);(2)證明過程見解析.【解析】(1)根據(jù)等比數(shù)列的通項公式,結合對數(shù)的運算性質、等比數(shù)列和等差數(shù)列前項和公式進行求解即可;(2)根據(jù)等比數(shù)列的通項公式,結合雙曲線漸近線方程和離心率公式進行證明即可.【小問1詳解】設等比數(shù)列的公比為,因為,所以,因此,所以,所以;【小問2詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.21、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進行等價轉化,再與恒為定值進行聯(lián)系,即可求得的值.【小問1詳解】由條件可設橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數(shù)形結合是數(shù)學解題中常用的思想方法,數(shù)形結合的思想可以使某些抽象的數(shù)學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論