![2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view/2d82ee16284d524c9fe417042d8dd88b/2d82ee16284d524c9fe417042d8dd88b1.gif)
![2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view/2d82ee16284d524c9fe417042d8dd88b/2d82ee16284d524c9fe417042d8dd88b2.gif)
![2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view/2d82ee16284d524c9fe417042d8dd88b/2d82ee16284d524c9fe417042d8dd88b3.gif)
![2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view/2d82ee16284d524c9fe417042d8dd88b/2d82ee16284d524c9fe417042d8dd88b4.gif)
![2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view/2d82ee16284d524c9fe417042d8dd88b/2d82ee16284d524c9fe417042d8dd88b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆云南省福貢縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在如圖所示的棱長(zhǎng)為1的正方體中,點(diǎn)P在側(cè)面所在的平面上運(yùn)動(dòng),則下列四個(gè)命題中真命題的個(gè)數(shù)是()①若點(diǎn)P總滿足,則動(dòng)點(diǎn)P的軌跡是一條直線②若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是一個(gè)周長(zhǎng)為的圓③若點(diǎn)P到直線AB的距離與到點(diǎn)C的距離之和為1,則動(dòng)點(diǎn)P的軌跡是橢圓④若點(diǎn)P到平面的距離與到直線CD的距離相等,則動(dòng)點(diǎn)P的軌跡是拋物線A.1 B.2C.3 D.42.已知是虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B.2C. D.43.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長(zhǎng)江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為,有一點(diǎn)從點(diǎn)出發(fā)每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.4.若函數(shù)f(x)=x2+x+1在區(qū)間內(nèi)有極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.5.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用6.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則7.函數(shù)的大致圖象為A. B.C. D.8.下列各式正確的是()A. B.C. D.9.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或10.已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)滿足,則的最小值為()A B.C. D.411.在平面區(qū)域內(nèi)隨機(jī)投入一點(diǎn)P,則點(diǎn)P的坐標(biāo)滿足不等式的概率是()A. B.C. D.12.已知函數(shù)是定義在上奇函數(shù),,當(dāng)時(shí),有成立,則不等式的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=3,且f(x)的導(dǎo)數(shù)在R上恒有<2(x∈R),則不等式f(x)<2x+1的解集為______.14.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時(shí)每步隨機(jī)選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.15.射擊隊(duì)某選手命中環(huán)數(shù)的概率如下表所示:命中環(huán)數(shù)10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環(huán)數(shù)相互獨(dú)立,則他至少命中一次9環(huán)或10環(huán)的概率為_________________.(結(jié)果用小數(shù)表示)16.已知橢圓的短軸長(zhǎng)為2,上頂點(diǎn)為,左頂點(diǎn)為,左、右焦點(diǎn)分別是,,且的面積為,點(diǎn)為橢圓上的任意一點(diǎn),則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值18.(12分)已知數(shù)列中,.(1)證明是等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),記數(shù)列的前n項(xiàng)和為,求使恒成立的最小的整數(shù)k.19.(12分)已知平面內(nèi)兩點(diǎn),,動(dòng)點(diǎn)P滿足(1)求動(dòng)點(diǎn)P的軌跡方程;(2)過定點(diǎn)的直線l交動(dòng)點(diǎn)P的軌跡于不同的兩點(diǎn)M,N,點(diǎn)M關(guān)于y軸對(duì)稱點(diǎn)為,求證直線過定點(diǎn),并求出定點(diǎn)坐標(biāo)20.(12分)已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(1)求C;(2)若,求的最大值21.(12分)如圖,在長(zhǎng)方體中,,,是棱的中點(diǎn)(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由22.(10分)已知拋物線y2=8x.(1)求出該拋物線的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線、對(duì)稱軸、變量x的范圍;(2)以坐標(biāo)原點(diǎn)O為頂點(diǎn),作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點(diǎn)F是△OAB的重心,求△OAB的周長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)線面關(guān)系、距離關(guān)系可分別對(duì)每一個(gè)命題判斷.【詳解】若點(diǎn)P總滿足,又,,,可得對(duì)角面,因此點(diǎn)P的軌跡是直線,故①正確若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是以點(diǎn)B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長(zhǎng)為,故②正確點(diǎn)P到直線AB的距離PB與到點(diǎn)C的距離PC之和為1,又,則動(dòng)點(diǎn)P的軌跡是線段BC,因此③不正確點(diǎn)P到平面的距離(即到直線的距離)與到直線CD的距離(即到點(diǎn)C的距離)相等,則動(dòng)點(diǎn)P的軌跡是以線段BC的中點(diǎn)為頂點(diǎn),直線BC為對(duì)稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個(gè)故選:C2、C【解析】先求出,然后根據(jù)復(fù)數(shù)的模求解即可【詳解】,,則,故選:C3、B【解析】本題首先可根據(jù)題意列出次跳動(dòng)的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點(diǎn)的事件,最后根據(jù)古典概型的概率計(jì)算公式即可得出結(jié)果.【詳解】點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,次跳動(dòng)的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點(diǎn)的事件有:(下,下,右),故到達(dá)點(diǎn)的概率,故選:B.4、C【解析】若f(x)=x2+x+1在區(qū)間內(nèi)有極值點(diǎn),則f'(x)=x2-ax+1在區(qū)間內(nèi)有零點(diǎn),且零點(diǎn)不是f'(x)的圖象頂點(diǎn)的橫坐標(biāo).由x2-ax+1=0,得a=x+.因?yàn)閤∈,y=x+的值域是,當(dāng)a=2時(shí),f'(x)=x2-2x+1=(x-1)2,不合題意.所以實(shí)數(shù)a的取值范圍是,故選C.5、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.6、C【解析】根據(jù)逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結(jié)論作條件、否定的條件作結(jié)論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C7、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時(shí)排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因?yàn)闀r(shí),,排除B.故選:D.8、C【解析】利用導(dǎo)數(shù)的四則運(yùn)算即可求解.【詳解】對(duì)于A,,故A錯(cuò)誤;對(duì)于B,,故B錯(cuò)誤;對(duì)于C,,故C正確;對(duì)于D,,故D錯(cuò)誤;故選:C9、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D10、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,有最小值為,即,所以故選:B11、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.12、A【解析】構(gòu)造函數(shù),分析該函數(shù)的定義域與奇偶性,利用導(dǎo)數(shù)分析出函數(shù)在上為增函數(shù),從而可知該函數(shù)在上為減函數(shù),綜合可得出原不等式的解集.【詳解】令,則函數(shù)的定義域?yàn)?,且,則函數(shù)為偶函數(shù),所以,,當(dāng)時(shí),,所以,函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),由等價(jià)于或:當(dāng)時(shí),由可得;當(dāng)時(shí),由可得.綜上所述,不等式的解集為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造函數(shù)g(x)=f(x)-2x-1,則原不等式可化為.利用導(dǎo)數(shù)判斷出g(x)在R上為減函數(shù),直接利用單調(diào)性解不等式即可【詳解】令g(x)=f(x)-2x-1,則g(1)=f(1)-2-1=0.所以原不等式可化為.因?yàn)椋詆(x)在R上為減函數(shù).由解得:x>1.故答案為:.14、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計(jì)算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:15、84【解析】先求出該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率,由對(duì)立事件的概率可得答案.【詳解】該選手射擊一次,命中的環(huán)數(shù)低于9環(huán)的概率為該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率為所以他至少命中一次9環(huán)或10環(huán)的概率為故答案:0.8416、【解析】根據(jù)的面積和短軸長(zhǎng)得出a,b,c的值,從而得出的范圍,得到關(guān)于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點(diǎn)睛】本題考查了橢圓的簡(jiǎn)單性質(zhì),函數(shù)最值的計(jì)算,熟練掌握橢圓的基本性質(zhì)是解題的關(guān)鍵,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個(gè)法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點(diǎn)睛】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時(shí)要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時(shí),要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來(lái)判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論18、(1)證明見解析,(2)4【解析】(1)由,得到,利用等比數(shù)列的定義求解;(2)由(1)得到,然后利用錯(cuò)位相減法求解.【小問1詳解】證明:由,得,∴,∴數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,∴,即.【小問2詳解】由題意得.,兩式相減得:,因?yàn)?,所以,所以使恒成立的最小的整?shù)k為4.19、(1)(2)證明見解析,定點(diǎn)坐標(biāo)為【解析】(1)直接由斜率關(guān)系計(jì)算得到;(2)設(shè)出直線,聯(lián)立橢圓方程,韋達(dá)定理求出,再結(jié)合三點(diǎn)共線,求出參數(shù),得到過定點(diǎn).小問1詳解】設(shè)動(dòng)點(diǎn),由已知有,整理得,所以動(dòng)點(diǎn)的軌跡方程為;【小問2詳解】由已知條件可知直線和直線斜率一定存在,設(shè)直線方程為,,,則,由,可得,則,即為,,,因?yàn)橹本€過定點(diǎn),所以三點(diǎn)共線,即,即,即,即,即得,整理,得,滿足,則直線方程為,恒過定點(diǎn).【點(diǎn)睛】本題關(guān)鍵在于設(shè)出帶有兩個(gè)參數(shù)的直線的方程,聯(lián)立橢圓方程后,利用題干中的條件,解出一個(gè)參數(shù)或得到兩個(gè)參數(shù)之間的關(guān)系,即可求出定點(diǎn).20、(1);(2).【解析】(1)將題設(shè)條件化為,結(jié)合余弦定理即可知C的大小.(2)由(1)及正弦定理邊角關(guān)系可得,再應(yīng)用輔助角公式、正弦函數(shù)的性質(zhì)即可求最大值.【小問1詳解】由,得,即,由余弦定理得:,又,所以【小問2詳解】由(1)知:,則,設(shè)△ABC外接圓半徑為R,則,當(dāng)時(shí),取得最大值為21、(1)證明見解析(2)(3)存點(diǎn),【解析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【詳解】(1)在長(zhǎng)方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因?yàn)?,,是棱的中點(diǎn)則則為平面的一個(gè)法向量.設(shè)為平面的一個(gè)法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為.(3)設(shè),,則由(2)平面的一個(gè)法向量設(shè)與平面所成角為則解得,取所以存在點(diǎn),滿足條件.22、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡(jiǎn)單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度市政道路鋼筋施工分包合同
- 便利店?duì)I業(yè)員個(gè)人工作總結(jié)2024(9篇)
- 2025年電影產(chǎn)業(yè)收益分配策略協(xié)議
- 2025年臨時(shí)建筑項(xiàng)目施工合同樣本
- 2025年鑄幣及貴金屬制實(shí)驗(yàn)室用品項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年聚苯硫醚(PPS)及合金項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2025年升級(jí)版?zhèn)€人代表授權(quán)合同
- 2025年小區(qū)護(hù)衛(wèi)服務(wù)合同范本
- 2025年醫(yī)療機(jī)構(gòu)衛(wèi)生用品清潔服務(wù)協(xié)議
- 2025年公民投票統(tǒng)一授權(quán)協(xié)議
- 封條模板A4直接打印版
- 立式加工中心說明書
- 唐太宗李世民
- 作文紙格子信紙
- 第八版神經(jīng)病學(xué)配套課件-12-中樞神經(jīng)系統(tǒng)感染性疾病
- 污水管網(wǎng)計(jì)算說明書
- 15MW風(fēng)力發(fā)電機(jī)
- 正面管教 讀書分享(課堂PPT)
- 肌肉注射流程
- 互聯(lián)網(wǎng)銷售卷煙(煙草)案件的分析
- 公務(wù)員考察政審表樣本
評(píng)論
0/150
提交評(píng)論