版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省廣安、眉山、內(nèi)江、遂寧數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知過點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.2.為了解一片大約一萬株樹木的生長(zhǎng)情況,隨機(jī)測(cè)量了其中100株樹木的底部周長(zhǎng)(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長(zhǎng)小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80003.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.04.已知圓柱的表面積為定值,當(dāng)圓柱的容積最大時(shí),圓柱的高的值為()A.1 B.C. D.25.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),過F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長(zhǎng)為8,則橢圓方程為()A. B.C. D.6.知點(diǎn)分別為圓上的動(dòng).點(diǎn),為軸上一點(diǎn),則的最小值()A. B.C. D.7.已知雙曲線C1的一條漸近線方程為y=kx,離心率為e1,雙曲線C2的一條漸近線方程為y=x,離心率為e2,且雙曲線C1、C2在第一象限交于點(diǎn)(1,1),則=()A.|k| B.C.1 D.28.空氣質(zhì)量指數(shù)大小分為五級(jí)指數(shù)越大說明污染的情況越嚴(yán)重,對(duì)人體危害越大,指數(shù)范圍在:,,,,分別對(duì)應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個(gè)等級(jí),如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢(shì)圖,下面說法錯(cuò)誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日9.已知,是空間中的任意兩個(gè)非零向量,則下列各式中一定成立的是()A. B.C. D.10.【2018江西撫州市高三八校聯(lián)考】已知雙曲線(,)與拋物線有相同的焦點(diǎn),且雙曲線的一條漸近線與拋物線的準(zhǔn)線交于點(diǎn),則雙曲線的離心率為()A. B.C. D.11.甲,乙、丙、丁、戊共5人隨機(jī)地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.12.某研究所計(jì)劃建設(shè)n個(gè)實(shí)驗(yàn)室,從第1實(shí)驗(yàn)室到第n實(shí)驗(yàn)室的建設(shè)費(fèi)用依次構(gòu)成等差數(shù)列,已知第7實(shí)驗(yàn)室比第2實(shí)驗(yàn)室的建設(shè)費(fèi)用多15萬元,第3實(shí)驗(yàn)室和第6實(shí)驗(yàn)室的建設(shè)費(fèi)用共為61萬元.現(xiàn)在總共有建設(shè)費(fèi)用438萬元,則該研究所最多可以建設(shè)的實(shí)驗(yàn)室個(gè)數(shù)是()A.10 B.11C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前項(xiàng)和為,則的值為_____14.已知存在正數(shù)使不等式成立,則的取值范圍_____15.如圖,在等腰直角△ABC中,,點(diǎn)P是邊AB上異于A、B的一點(diǎn),光線從點(diǎn)P出發(fā),經(jīng)BC、CA反射后又回到原點(diǎn)P.若光線QR經(jīng)過△ABC的內(nèi)心,則___________.16.從正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),可得到四面體的概率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2017年廈門金磚會(huì)晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會(huì)晤期間產(chǎn)生的碳排放,擬用20年時(shí)間將碳排放全部吸收,實(shí)現(xiàn)“零碳排放”目標(biāo),向世界傳遞低碳,環(huán)保辦會(huì)的積極信號(hào),踐行金磚國(guó)家倡導(dǎo)的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當(dāng)年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個(gè)遞推公式,表示與之間的關(guān)系;②證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)為了提前5年實(shí)現(xiàn)廈門會(huì)晤“零碳排放”的目標(biāo),m的最小值為多少?參考數(shù)據(jù):,,18.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明19.(12分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學(xué)”的行動(dòng),老師們立即開展了線上教學(xué).某中學(xué)為了解教學(xué)效果,于11月30日復(fù)課第一天安排了測(cè)試,數(shù)學(xué)教師為了調(diào)查高二年級(jí)學(xué)生這次測(cè)試的數(shù)學(xué)成績(jī)與每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高二學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查,了解到其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí),并得到如下的統(tǒng)計(jì)圖:(1)根據(jù)統(tǒng)計(jì)圖填寫下面列聯(lián)表,是否有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)有關(guān)”;數(shù)學(xué)成績(jī)不超過120分?jǐn)?shù)學(xué)成績(jī)超過120分總計(jì)每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)25每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)總計(jì)45(2)從被抽查的,且這次數(shù)學(xué)成績(jī)超過120分的學(xué)生中,按分層抽樣的方法抽取5名,再?gòu)倪@5名同學(xué)中隨機(jī)抽取2名,求這兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)若雙曲線-=1(a>0,b>0)的焦點(diǎn)坐標(biāo)分別為和,且該雙曲線經(jīng)過點(diǎn)P(3,1)(1)求雙曲線的方程;(2)若F是雙曲線的右焦點(diǎn),Q是雙曲線上的一點(diǎn),過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,且,求直線l的斜率21.(12分)已知函數(shù)在處有極值.(1)求常數(shù)a,b的值;(2)求函數(shù)在上的最值.22.(10分)新冠肺炎疫情發(fā)生以來,我國(guó)某科研機(jī)構(gòu)開展應(yīng)急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進(jìn)入二期臨床試驗(yàn).根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會(huì)產(chǎn)生抗體,人體中檢測(cè)到抗體,說明有抵御病毒的能力.通過檢測(cè),用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬國(guó)際單位/毫升),現(xiàn)測(cè)得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.(1)根據(jù)散點(diǎn)圖判斷,與(a,b,c,d均為大于0的實(shí)數(shù))哪一個(gè)更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預(yù)測(cè)該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測(cè)數(shù)據(jù)中隨機(jī)抽取4天的數(shù)據(jù)作進(jìn)一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學(xué)期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過點(diǎn),,,,的線性回歸方程的系數(shù)公式,;.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C2、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長(zhǎng)小于110㎝的概率,進(jìn)而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長(zhǎng)小于110㎝的概率為,因此在這片樹木中,底部周長(zhǎng)小于110㎝的株樹大約是.故選:C.【點(diǎn)睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.3、A【解析】先化簡(jiǎn)A-B,發(fā)現(xiàn)其結(jié)果為二項(xiàng)式展開式,然后計(jì)算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)用,關(guān)鍵是通過化簡(jiǎn)能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項(xiàng)式展開式,然后計(jì)算出結(jié)果,屬于基礎(chǔ)題4、B【解析】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導(dǎo)數(shù)求出最大值,確定值.【詳解】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當(dāng)時(shí),取極大值,也是最大值,即故選:B【點(diǎn)睛】本題主要考查了圓柱表面積和體積的計(jì)算,考查了導(dǎo)數(shù)的實(shí)際應(yīng)用,考查了學(xué)生的應(yīng)用意識(shí).5、A【解析】由題得c=1,再根據(jù)△MF2N的周長(zhǎng)=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),∴c=1,又根據(jù)橢圓的定義,△MF2N的周長(zhǎng)=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點(diǎn)睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.6、B【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為1,∴若與關(guān)于x軸對(duì)稱,則,即,當(dāng)三點(diǎn)不共線時(shí),當(dāng)三點(diǎn)共線時(shí),所以同理(當(dāng)且僅當(dāng)時(shí)取得等號(hào))所以當(dāng)三點(diǎn)共線時(shí),當(dāng)三點(diǎn)不共線時(shí),所以∴的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,∴.故選:B.7、C【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,再由過點(diǎn),可知雙曲線方程,從而可求離心率.【詳解】由題,設(shè)雙曲線的方程為,又因?yàn)槠溥^,且可知,不妨設(shè),代入,得,所以雙曲線的方程為,所以,同理可得雙曲線的方程為,所以可得,所以,當(dāng)時(shí),結(jié)論依然成立.故選:C8、C【解析】根據(jù)題圖分析數(shù)據(jù),對(duì)選項(xiàng)逐一判斷【詳解】對(duì)于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對(duì)于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對(duì)于C,14個(gè)數(shù)據(jù)中位數(shù)為:,故C錯(cuò)誤對(duì)于D,觀察折線圖可知D正確故選:C9、C【解析】利用向量數(shù)量積的定義及運(yùn)算性質(zhì)逐一分析各選項(xiàng)即可得答案.【詳解】解:對(duì)A:因?yàn)椋?,故選項(xiàng)A錯(cuò)誤;對(duì)B:因?yàn)椋蔬x項(xiàng)B錯(cuò)誤;對(duì)C:因?yàn)椋蔬x項(xiàng)C正確;對(duì)D:因?yàn)?,故選項(xiàng)D錯(cuò)誤故選:C.10、C【解析】由題意可知,拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,由在拋物線的準(zhǔn)線上,則,則,則焦點(diǎn)坐標(biāo)為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.11、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機(jī)地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進(jìn)行排列,然后丙、丁從3個(gè)空中選2個(gè)空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A12、C【解析】根據(jù)等差數(shù)列通項(xiàng)公式,列出方程組,求出的值,進(jìn)而求出令根據(jù)題意令,即可求解.【詳解】設(shè)第n實(shí)驗(yàn)室的建設(shè)費(fèi)用為萬元,其中,則為等差數(shù)列,設(shè)公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設(shè)12個(gè)實(shí)驗(yàn)室.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列前項(xiàng)和公式的特點(diǎn)列方程,解方程求得的值.【詳解】由于等比數(shù)列前項(xiàng)和,本題中,故.故填:.【點(diǎn)睛】本小題主要考查等比數(shù)列前項(xiàng)和公式的特點(diǎn),考查觀察與思考的能力,屬于基礎(chǔ)題.14、(1,1)【解析】存在性問題轉(zhuǎn)化為最大值,運(yùn)用均值不等式,求出的最大值,轉(zhuǎn)化成解對(duì)數(shù)不等式,進(jìn)而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時(shí),即:時(shí),∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點(diǎn)睛】本題考查均值不等式的應(yīng)用和對(duì)數(shù)不等式的解法,還涉及存在性問題,考查化簡(jiǎn)計(jì)算能力15、【解析】以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),求得△的內(nèi)心坐標(biāo),根據(jù)△內(nèi)心以及關(guān)于的對(duì)稱點(diǎn)三點(diǎn)共線,即可求得點(diǎn)的坐標(biāo),則問題得解.【詳解】根據(jù)題意,以為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,關(guān)于軸的對(duì)稱點(diǎn)為,如下所示:則,不妨設(shè),則直線的方程為,設(shè)點(diǎn)坐標(biāo)為,則,且,整理得,解得,即點(diǎn),又;設(shè)△的內(nèi)切圓圓心為,則由等面積法可得,解得;故其內(nèi)心坐標(biāo)為,由及△的內(nèi)心三點(diǎn)共線,即,整理得,解得(舍)或,故.故答案為:.16、【解析】計(jì)算出正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn)的取法和分從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)、從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)、從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)可得到四面體的取法,由古典概型概率計(jì)算公式可得答案.【詳解】正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),共有取法,可得到四面體的情況有從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)有種;從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)有種,其中當(dāng)上底面和下底面取的四個(gè)點(diǎn)在同一平面時(shí)共有10種情況不符合,此種情況共有種;從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)有種;一個(gè)有種,所以可得到四面體的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個(gè)遞推公式即可;②要證明是等比數(shù)列,只要證明為一個(gè)常數(shù)即可,求出等比數(shù)列的通項(xiàng)公式,即可求出的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項(xiàng)和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因?yàn)椋?,所以,因?yàn)樗詳?shù)列是等比數(shù)列,首項(xiàng)是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項(xiàng)和,,依題,所以,所以m最少為6.56噸18、(1)答案見解析(2)證明見解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時(shí),,即不等式成立.【小問1詳解】解:函數(shù)的定義域?yàn)?,,∴?dāng)時(shí),在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因?yàn)闀r(shí),證明,只需證明,由(1)知,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以.所以時(shí),,所以當(dāng)時(shí),19、(1)表格見解析,有(2)【解析】(1)根據(jù)統(tǒng)計(jì)圖計(jì)算填表即可;(2)根據(jù)古典概型計(jì)算公式計(jì)算即可.【小問1詳解】根據(jù)統(tǒng)計(jì)圖可得:每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)數(shù)學(xué)成績(jī)不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)數(shù)學(xué)成績(jī)超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)數(shù)學(xué)成績(jī)不超過120分的有人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)數(shù)學(xué)成績(jī)超過120分的有人,可得列聯(lián)表如下:數(shù)學(xué)成績(jī)不超過120分?jǐn)?shù)學(xué)成績(jī)超過120分總計(jì)每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)151025每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)51520總計(jì)202545根據(jù)列聯(lián)表中的數(shù)據(jù),所以有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)有關(guān)”【小問2詳解】由列聯(lián)表可得,被抽查學(xué)生中這次數(shù)學(xué)成績(jī)超過120分的有25人,其中每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)的有10人,每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)的有15人,人數(shù)比為2∶3,按分層抽樣每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)的抽2人,記為:1,2;每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)的抽3人,記為:a,b,c.所有可能結(jié)果如下:,共計(jì)10種.設(shè)事件A為“兩名同學(xué)中至多有一名每天
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年市檔案工作計(jì)劃模板
- 2025年月護(hù)師工作計(jì)劃范文
- 2025年幼兒園教研計(jì)劃總結(jié)
- 2025年小學(xué)學(xué)校教研工作計(jì)劃
- 2025年學(xué)院基建處工作計(jì)劃范文學(xué)校工作計(jì)劃
- 關(guān)心老人(說課稿)粵教版四年級(jí)上冊(cè)綜合實(shí)踐活動(dòng)
- 2025年酒店保潔工作計(jì)劃
- 2025年成都計(jì)劃生育藥具培訓(xùn)教案
- Unit5 第3課時(shí) (說課稿)Wrap-up time三年級(jí)英語上冊(cè)同步高效課堂系列(譯林版三起·2024秋)
- Unit 4 school days further study說課稿 -2024-2025學(xué)年譯林版七年級(jí)英語上冊(cè)
- 2024年冬季校園清雪合同
- 翻譯美學(xué)理論
- 15J403-1-樓梯欄桿欄板(一)
- 中國(guó)傳統(tǒng)樂器蕭介紹
- 2024屆華中師范大學(xué)新高三第一次聯(lián)考試題
- 小學(xué)食堂食品添加劑管理制度
- 職業(yè)技術(shù)學(xué)院汽車專業(yè)人才需求調(diào)研報(bào)告
- 第3章《物態(tài)變化》大單元教學(xué)設(shè)計(jì)- 2023-2024學(xué)年人教版八年級(jí)物理上冊(cè)
- 領(lǐng)導(dǎo)對(duì)述職報(bào)告的點(diǎn)評(píng)詞
- DL∕T 5210.4-2018 電力建設(shè)施工質(zhì)量驗(yàn)收規(guī)程 第4部分:熱工儀表及控制裝置
- YYT 0661-2017 外科植入物 半結(jié)晶型聚丙交酯聚合物和共聚物樹脂
評(píng)論
0/150
提交評(píng)論