2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆石家莊市重點中學數(shù)學高二上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知m,n表示兩條不同直線,表示兩個不同平面.設有兩個命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.3.若數(shù)列對任意滿足,下面選項中關于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列4.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題5.等比數(shù)列的公比為q,前n項和為,設甲:,乙:是遞增數(shù)列,則()A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件6.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.7.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.8.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.39.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.10.若函數(shù)的導函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.11.函數(shù)在處有極值為,則的值為()A. B.C. D.12.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓與雙曲線有公共焦點,設橢圓與雙曲線在第一象限內(nèi)交于點,橢圓與雙曲線的離心率分別為為坐標原點,,則的取值范圍是___________.14.《周髀算經(jīng)》是中國最古老的天文學和數(shù)學著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為___________尺.15.希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.16.__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程18.(12分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.19.(12分)已知三角形的內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.20.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(2)若直線與圓無公共點求的取值范圍21.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程22.(10分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個人要進行一場五局三勝的比賽,勝者贏得2700元獎金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因為其他要事而終止比賽,間,怎么分獎金才公平?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用直線與平面,平面與平面的位置關系判斷2個命題的真假,再利用復合命題的真值表判斷選項的正誤即可【詳解】,表示兩條不同直線,,表示兩個不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:2、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當時,,,,;,此時,退出循環(huán),輸出的的為.故選:B【點睛】本題考查程序框圖的應用,此類題要注意何時循環(huán)結(jié)束,建議數(shù)據(jù)不大時采用寫出來的辦法,是一道容易題.3、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當時,數(shù)列是等差數(shù)列,當時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D4、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D5、B【解析】當時,通過舉反例說明甲不是乙的充分條件;當是遞增數(shù)列時,必有成立即可說明成立,則甲是乙的必要條件,即可選出答案【詳解】由題,當數(shù)列為時,滿足,但是不是遞增數(shù)列,所以甲不是乙的充分條件若是遞增數(shù)列,則必有成立,若不成立,則會出現(xiàn)一正一負的情況,是矛盾的,則成立,所以甲是乙的必要條件故選:B【點睛】在不成立的情況下,我們可以通過舉反例說明,但是在成立的情況下,我們必須要給予其證明過程6、B【解析】設公共焦點為,推導出,可得出,進而可求得、的值.【詳解】設公共焦點為,則,則,即,故,即,,故選:B7、A【解析】分離參數(shù),求函數(shù)的導數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當,在上單調(diào)遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設條件構(gòu)建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解8、C【解析】由可得出,利用空間向量數(shù)量積的坐標運算可得出關于實數(shù)的等式,由此可解得實數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C9、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.10、A【解析】根據(jù)導數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A11、B【解析】根據(jù)函數(shù)在處有極值為,由,求解.【詳解】因為函數(shù),所以,所以,,解得a=6,b=9,=-3,故選:B12、A【解析】設雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關于、的等式,即可求得雙曲線的離心率.【詳解】設雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設,則有,所以,即,又因為,所以,所以,即,則,由,得,所以,所以,則,由,得,因為,當且僅當,即時,取等號,因為,所以,所以,即,所以的取值范圍是.故答案為:.14、【解析】利用等差數(shù)列的通項公式求出首項和公差,然后求出其中某一項.【詳解】解:由題意得從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列,設其公差為,解得故立夏的日影子長為尺.故答案為:15、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應用.還考查了學生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大16、【解析】先由題得到,再整體代入化簡即得解.【詳解】因為,所以,則故答案為【點睛】本題主要考查差角的正切公式,意在考查學生對該知識的理解掌握水平,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進而通過點斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.18、(1)(2)極小值為,無極大值【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)導數(shù)的幾何意義即可求出切線方程;(2)根據(jù)導數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得出答案.【小問1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(1,f(1))處曲線的切線方程為;小問2詳解】當時,,當時,,所以函數(shù)在上遞減,在上遞增,函數(shù)的極小值為,無極大值.19、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因,所以.因為角為鈍角,所以角為銳角,所以【小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=20、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長;(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離為,弦長(2)若直線與圓無公共點,則圓心到直線的距離大于半徑解得或21、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設直線方程,與拋物線聯(lián)立,利用韋達定理,即可求解.【詳解】(1)由題設知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設,,顯然直線的斜率存在,故設直線的方程為,聯(lián)立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為22、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論