版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市SOEC高二數(shù)學(xué)第一學(xué)期期末考試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在R上的函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論中正確的是()A. B.C. D.2.下列命題中的假命題是()A.若log2x<2,則0<x<4B.若與共線,則與的夾角為0°C.已知各項(xiàng)都不為零的數(shù)列{an}滿足an+1-2an=0,則該數(shù)列為等比數(shù)列D.點(diǎn)(π,0)是函數(shù)y=sinx圖象上一點(diǎn)3.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=14.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或5.設(shè)實(shí)系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類(lèi)比上述方法:設(shè)實(shí)系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.46.十二平均律是我國(guó)明代音樂(lè)理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬(wàn)歷十二年(公元1584年),他寫(xiě)成《律學(xué)新說(shuō)》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個(gè)正數(shù),使包含1和2的這13個(gè)數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個(gè)數(shù)應(yīng)為()A. B.C. D.7.已知拋物線的焦點(diǎn)為F,過(guò)F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.8.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若,則|QF|=()A. B.C.3 D.29.已知圓的半徑為,平面上一定點(diǎn)到圓心的距離,是圓上任意一點(diǎn).線段的垂直平分線和直線相交于點(diǎn),設(shè)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為,當(dāng)時(shí),軌跡對(duì)應(yīng)曲線的離心率取值范圍為()A. B.C. D.10.已知等差數(shù)列且,則數(shù)列的前13項(xiàng)之和為()A.26 B.39C.104 D.5211.下列語(yǔ)句中是命題的是A.周期函數(shù)的和是周期函數(shù)嗎? B.C. D.梯形是不是平面圖形呢?12.已知圓與圓沒(méi)有公共點(diǎn),則實(shí)數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩平行直線與間的距離為3,則C的值是________.14.已知拋物線:,若直線與拋物線C相交于M,N兩點(diǎn),則_______________.15.已知數(shù)列滿足,,則_____________.16.設(shè)空間向量,且,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知:,,:,,且為真命題,求實(shí)數(shù)的取值范圍.18.(12分)如圖,已知橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)直線軸時(shí),.(1)求橢圓的方程;(2)記,的面積分別為,求的取值范圍;(3)若的重心在圓上,求直線的斜率.19.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.20.(12分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點(diǎn)為棱的中點(diǎn),證明:平面平面;(2)若平面平面,點(diǎn)為棱的中點(diǎn),求直線與平面所成角的正弦值.21.(12分)已知命題p:實(shí)數(shù)x滿足(其中);命題q:實(shí)數(shù)x滿足(1)若,為真命題,求實(shí)數(shù)x的取值范圍;(2)若p是q的充分條件,求實(shí)數(shù)的取值范圍22.(10分)設(shè)函數(shù)過(guò)點(diǎn)(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由可得,利用導(dǎo)數(shù)判斷函數(shù)在上的單調(diào)性,由此比較函數(shù)值的大小確定正確選項(xiàng).【詳解】∵∴,當(dāng)時(shí),,∴,故∴在內(nèi)單調(diào)遞增,又,∴,所以故選:B2、B【解析】四個(gè)選項(xiàng)中需要分別利用對(duì)數(shù)函數(shù)的性質(zhì),向量共線的定義,等比數(shù)列的定義以及三角函數(shù)圖像判斷,根據(jù)題意結(jié)合知識(shí)點(diǎn),即可得出結(jié)果.【詳解】選項(xiàng)A,由于此對(duì)數(shù)函數(shù)單調(diào)遞增,并且結(jié)合對(duì)數(shù)函數(shù)定義域,即可求得結(jié)果,所以是真命題;選項(xiàng)B,向量共線,夾角可能是或,所以是假命題;選項(xiàng)C,將式子變形可得,符合等比數(shù)列定義,所以是真命題;選項(xiàng)D,將點(diǎn)代入解析式,等號(hào)成立,所以是真命題;故選B.【點(diǎn)睛】本題考查命題真假的判定,根據(jù)題意結(jié)合各知識(shí)點(diǎn)即可判斷真假,需要熟練掌握對(duì)數(shù)函數(shù)、等比數(shù)列、向量夾角以及三角函數(shù)的基本性質(zhì).3、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題4、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.5、A【解析】用類(lèi)比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對(duì)應(yīng)系數(shù)相等得:,.故選:A.【點(diǎn)睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.6、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式即可求解.【詳解】用表示這個(gè)數(shù)列,依題意,,則,,第四個(gè)數(shù)即.故選:C.7、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因?yàn)橹本€l的方程為,即,由消去y,得,設(shè),則,又因?yàn)橄业闹悬c(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.8、C【解析】過(guò)點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,利用拋物線定義以及相似得到|QF|=|QQ′|=3.【詳解】如圖所示:過(guò)點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,因?yàn)?,所以|PQ|∶|PF|=3∶4,又焦點(diǎn)F到準(zhǔn)線l的距離為4,所以|QF|=|QQ′|=3.故選C.【點(diǎn)睛】本題考查了拋物線的定義應(yīng)用,意在考查學(xué)生的計(jì)算能力.9、D【解析】分點(diǎn)A在圓內(nèi),圓外兩種情況,根據(jù)中垂線的性質(zhì),結(jié)合橢圓、雙曲線的定義可判斷軌跡,再由離心率計(jì)算即可求解.【詳解】當(dāng)A在圓內(nèi)時(shí),如圖,,所以的軌跡是以O(shè),A為焦點(diǎn)的橢圓,其中,,此時(shí),,.當(dāng)A在圓外時(shí),如圖,因?yàn)?,所以軌跡是以O(shè),A為焦點(diǎn)的雙曲線,其中,,此時(shí),,.綜上可知,.故選:D10、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件可得的值,再由等差數(shù)列前項(xiàng)和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項(xiàng)之和為,故選:A11、B【解析】命題是能判斷真假的語(yǔ)句,疑問(wèn)句不是命題,易知為命題,故選B12、B【解析】求出圓、的圓心和半徑,再由兩圓沒(méi)有公共點(diǎn)列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒(méi)有公共點(diǎn),則有或,即或,又,解得或,所以實(shí)數(shù)a的取值范圍為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】?jī)善叫兄本€與間的距離為3,所以,所以故答案為:14、8【解析】直線方程代入拋物線方程,應(yīng)用韋達(dá)定理根據(jù)弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè),由得,所以,,故答案為:815、【解析】由題設(shè)可得,應(yīng)用累加法有,結(jié)合已知即可求.【詳解】由題設(shè),,所以,又,所以.故答案為:.16、1【解析】根據(jù),由求解.【詳解】因?yàn)橄蛄?,且,所以,即,解?故答案為:1三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】由,為真,可得對(duì)任意的恒成立,從而分和求出實(shí)數(shù)的取值范圍,再由,,可得關(guān)于的方程有實(shí)根,則有,從而可求出實(shí)數(shù)的取值范圍,然后求交集可得結(jié)果【詳解】解:可化為.若:,為真,則對(duì)任意的恒成立.當(dāng)時(shí),不等式可化為,顯然不恒成立,當(dāng)時(shí),有且,所以.①若:,為真,則關(guān)于的方程有實(shí)根,所以,即,所以或.②又為真命題,故,均為真命題.所以由①②可得的取值范圍為.18、(1)(2)(3)【解析】(1)根據(jù)已知條件得到,,即可得到橢圓的方程.(2)首先設(shè)直線為,與橢圓聯(lián)立得到,根據(jù)得到的范圍,從而得到的范圍.(3)設(shè)重心,根據(jù)重心性質(zhì)得到,,再代入求解即可.小問(wèn)1詳解】因?yàn)樽箜旤c(diǎn),所以,根據(jù),可得,解得,所以;【小問(wèn)2詳解】設(shè)直線為,則,則,,那么,根據(jù)解得,所以.【小問(wèn)3詳解】設(shè)重心,則:,,所以,所以,即所求直線的斜率為.19、(1)證明過(guò)程見(jiàn)解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問(wèn)1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)?,,為的中點(diǎn),所以,,而,因?yàn)?,所以,而平面,所以平面;【小?wèn)2詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.20、(1)證明見(jiàn)解析(2)【解析】(1)先證明,,進(jìn)而證明平面,即可證明平面,從而證明平面平面.(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,用向量法求解即可【小問(wèn)1詳解】因?yàn)闉榈妊苯侨切?,點(diǎn)為棱的中點(diǎn),所以,又因?yàn)?,,所以,又因?yàn)樵谥?,,,所以,所以,所以,又因?yàn)?,所以平面,又因?yàn)闉槠叫兴倪呅?,所以,所以平面,又因?yàn)槠矫?,所以平面平?【小問(wèn)2詳解】因?yàn)槠矫嫫矫?,平面平面,,所以平面,又因?yàn)?,以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系.則,,,,所以,,,,設(shè)平面的一個(gè)法向量為,則由,,可得令,得,設(shè)直線與平面所成角為,,所以直線與平面所成角的正弦值為.21、(1)(2)【解析】(1)由得命題p:,然后由為真命題求解;(2)由得,再根據(jù)是的充分條件求解.小問(wèn)1詳解】當(dāng)時(shí),,解得:,由為真命題,,解得;【小問(wèn)2詳解】由(其中)可得,因?yàn)槭堑某浞謼l件,則,解得:22、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點(diǎn)代入函數(shù)解析式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版智能安防系統(tǒng)建設(shè)合同
- 2024自愿終止勞動(dòng)合同書(shū)
- 2024年餐廳食材供貨合同樣本3篇
- 2025年度環(huán)保行業(yè)微信公眾號(hào)全案代運(yùn)營(yíng)服務(wù)協(xié)議3篇
- 2024年限定版農(nóng)地承包協(xié)議樣本版B版
- 二零二五年度房地產(chǎn)項(xiàng)目土地征用及開(kāi)發(fā)合作協(xié)議0063篇
- 2025年度民營(yíng)中小企業(yè)融資咨詢與服務(wù)合同管理制度2篇
- 二零二五年度新型環(huán)保攪拌站設(shè)備承包生產(chǎn)合同3篇
- 2024年環(huán)保機(jī)構(gòu)工作人員合同3篇
- 2024年酒類(lèi)產(chǎn)品環(huán)保與安全生產(chǎn)合同
- 文徵明《玉女潭山居記(節(jié)選)》原文,注釋,譯文,賞析
- 醫(yī)院醫(yī)療質(zhì)量安全管理工作計(jì)劃以及安全工作記錄
- 《關(guān)于新時(shí)代文明實(shí)踐志愿服務(wù)機(jī)制建設(shè)的實(shí)施方案》
- 外立面改造專(zhuān)項(xiàng)施工方案
- 鄉(xiāng)村旅游景觀小品裝飾創(chuàng)新創(chuàng)意
- 《甲狀腺的超聲診斷》
- 事業(yè)單位崗位設(shè)置管理工作手冊(cè)-臺(tái)州市事業(yè)單位崗位設(shè)置管理
- 中醫(yī)醫(yī)師定考述職報(bào)告3篇
- 醫(yī)療系統(tǒng)氣動(dòng)物流傳輸系統(tǒng)施工工法
- GB/T 42177-2022加氫站氫氣閥門(mén)技術(shù)要求及試驗(yàn)方法
- 多層共擠吹膜
評(píng)論
0/150
提交評(píng)論