福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題含解析_第1頁
福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題含解析_第2頁
福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題含解析_第3頁
福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題含解析_第4頁
福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市晉江四校2023年高二上數(shù)學期末預測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,,若,,則()A. B.C. D.2.設函數(shù)的圖象為C,則下面結論中正確的是()A.函數(shù)的最小正周期是B.圖象C關于點對稱C.函數(shù)在區(qū)間上是增函數(shù)D.圖象C可由函數(shù)的圖象向右平移個單位得到3.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個數(shù)是()A.381 B.361C.329 D.4004.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.5.已知直線與直線垂直,則()A. B.C. D.6.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.7.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,8.已知向量,且,則()A. B.C. D.9.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種10.某學校高一、高二、高三年級的學生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學生中抽取容量為50的樣本,則應從高三年級抽取的學生數(shù)為()A.10 B.15C.20 D.3011.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當p=p0時,f(p)最大,則p0=()A. B.C. D.12.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應填入()A.? B.?C.? D.?二、填空題:本題共4小題,每小題5分,共20分。13.已知為坐標原點,、分別是雙曲線的左、右頂點,是雙曲線上不同于、的動點,直線、與軸分別交于點、兩點,則________14.設正方形的邊長是,在該正方形區(qū)域內隨機取一個點,則此點到點的距離大于的概率是_____15.直線過拋物線的焦點F,且與C交于A,B兩點,則___________.16.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值18.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點是上一點(1)求雙曲線的標準方程;(2)若過點的直線與交于,兩點,點能否為線段的中點?并說明理由19.(12分)已知橢圓F:經過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由20.(12分)為了符合國家制定的工業(yè)廢氣排放標準,某工廠在國家科研部門的支持下,進行技術攻關,采用新工藝,對其排放的廢氣中的二氧化硫轉化為一種可利用的化工產品.已知該工廠每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產品價值為200元(1)該工廠每月處理量為多少噸時,才能使每噸的平均處理成本最低?(2)該工廠每月能否獲利?如果獲利,求出最大利潤:如果不獲利,則國家每月至少應補貼多少元才能使工廠不虧損?21.(12分)將離心率相同的兩個橢圓如下放置,可以形成一個對稱性很強的幾何圖形,現(xiàn)已知.(1)若在第一象限內公共點的橫坐標為1,求的標準方程;(2)假設一條斜率為正的直線與依次切于兩點,與軸正半軸交于點,試求的最大值及此時的標準方程.22.(10分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B2、B【解析】化簡函數(shù)解析式,求解最小正周期,判斷選項A,利用整體法求解函數(shù)的對稱中心和單調遞增區(qū)間,判斷選項BC,再由圖象變換法則判斷選項D.【詳解】,所以函數(shù)的最小正周期為,A錯;令,得,所以函數(shù)圖象關于點對稱,B正確;由,得,所以函數(shù)在上為增函數(shù),在上為減函數(shù),C錯;函數(shù)的圖象向右平移個單位得,D錯.故選:B3、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個數(shù)是,第2行從左往右最后1個數(shù)是,第3行從左往右最后1個數(shù)是,……第18行從左往右最后1個數(shù)為,第19行從左往右第5個數(shù)是故選:C.4、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C5、D【解析】根據(jù)互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D6、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B7、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當?shù)拿娣e最小時,,故正確故選:8、A【解析】利用空間向量共線的坐標表示即可求解.【詳解】由題意可得,解得,所以.故選:A9、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.10、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應從高三年級抽取的學生數(shù)為,故選:C.11、A【解析】解設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當且僅當,即時,等號成立,即,故選:A12、C【解析】本題為計算前項和,模擬程序,實際計算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項和.易知,則,令,解得.即前7項的和.為故判斷框中應填入“?”.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】求得坐標,設出點坐標,求得直線的方程,由此求得兩點的縱坐標,進而求得.【詳解】依題意,設,則,直線的方程為,則,直線的方程為,則,所以.故答案為:14、【解析】先求出正方形的面積,然后求出動點到點的距離所表示的平面區(qū)域的面積,最后根據(jù)幾何概型計算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內,陰影外面部分的面積為,則在該正方形區(qū)域內隨機取一個點,則此點到點的距離大于的概率是.【點睛】本題考查了幾何概型的計算公式,正確求出陰影部分的面積是解題的關鍵.15、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達定理及即可求解.【詳解】解:因為拋物線的焦點坐標為,又直線過拋物線的焦點F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.16、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結合可得,進而應用弦長公式、點線距離公式及三角形面積公式求△面積的范圍,再逐個求解,,然后可證結論.【小問1詳解】由題意,解得,故橢圓C的方程為.【小問2詳解】設直線為,聯(lián)立得:,因為直線與橢圓C相切,則判別式,即,整理得,∴,故直線為,又,可得,設直線為,聯(lián)立方程組,解得,故Q為,聯(lián)立方程組,化簡得設,由得:,且,①,到直線的距離為,∴,令,∴.②由上,故,于是為定值.【點睛】直線與橢圓的相切問題一般是聯(lián)立方程,結合判別式為零求解;定值問題的求解一般結合目標式中的項,逐個求解,代入驗證即可.18、(1);(2)點不能為線段的中點,理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點的坐標,然后可解得得雙曲線方程;(2)設直線方程為(斜率不存在時另說明),與雙曲線方程聯(lián)立,消元后應用韋達定理,結合中點坐標公式求得,然后難驗證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當時,的標準方程為,代入,無解當時,的標準方程為,代入,解得故的標準方程為(2)不能是線段的中點設交點,,當直線的斜率不存在時,直線與雙曲線只有一個交點,不符合題意.當直線的斜率存在時,設直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點不能為線段的中點19、(1);(2)存在點,使得為定值.【解析】(1)設,,,結合條件即求;(2)由題可設直線方程,利用韋達定理法可得,再結合條件可得點的軌跡方程為,然后利用橢圓的定義即得結論.【小問1詳解】設,,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標分別為,當直線AB或CD的斜率不存在時,點M的坐標為或,當直線AB和CD的斜率都存在時,設斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設點,則,所以,化簡得,當直線或的斜率不存在時,點M的坐標為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關鍵點點睛:本題的關鍵是利用韋達定理法及題設條件求出點M的軌跡方程,再結合橢圓的定義,從而問題得到解決.20、(1)600噸(2)該工廠不獲利,且需要國家每月至少補貼52500元才能使工廠不虧損【解析】(1)設該工廠每噸平均處理成本為z,,利用基本不等式求最值可得答案;(2)設該工廠每月的利潤為,利用配方求最值可得答案.【小問1詳解】設該工廠每噸平均處理成本為z,,∴,當且僅當,即時取等號,當時,每噸平均處理成本最低.【小問2詳解】設該工廠每月的利潤為,則,∴,當時,,所以該工廠不獲利,且需要國家每月至少補貼52500元才能使工廠不虧損.21、(1)(2);【解析】(1)設,將點代入得出的標準方程;(2)聯(lián)立與直線的方程,得出兩點的坐標,進而得出,再結合導數(shù)得出的最大值及此時的標準方程.【小問1詳解】由題意得:在第一象限的公共點為設,則有:的標準方程為:;【小問2詳解】設y=kx+m則①,則②,,,又,由①有代入①有,令,則令,在單調遞增,在單調遞減,此時,則,代入②得,綜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論