版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建廈門(mén)湖濱中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.2.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.3.若點(diǎn)P在曲線上運(yùn)動(dòng),則點(diǎn)P到直線的距離的最大值為()A. B.2C. D.44.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓的離心率為()A. B.C. D.5.已知等比數(shù)列,且,則()A.16 B.32C.24 D.646.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-17.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.508.已知橢圓C:的兩個(gè)焦點(diǎn)分別為,,橢圓C上有一點(diǎn)P,則的周長(zhǎng)為()A.8 B.10C. D.129.若函數(shù)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動(dòng)點(diǎn),則的最小值為().A. B.C. D.11.設(shè)數(shù)列的前項(xiàng)和為,當(dāng)時(shí),,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.12.已知是兩條不同的直線,是兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.若直線與雙曲線的右支交于不同的兩點(diǎn),則的取值范圍__________14.已知拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,過(guò)點(diǎn)F和的直線l與拋物線C交于P,Q兩點(diǎn).若,則________.15.若將拋擲一枚硬幣所出現(xiàn)的結(jié)果“正面(朝上)”與“反面(朝上)”,分別記為H、T,相應(yīng)的拋擲兩枚硬幣的樣本空間為,則與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間的子集為_(kāi)_____16.已知函數(shù),,對(duì)一切,恒成立,則實(shí)數(shù)的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)命題:函數(shù)有意義;命題:實(shí)數(shù)滿足.(1)當(dāng)且為真時(shí),求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓C上,且滿足(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同的兩點(diǎn)M,N,且(O為坐標(biāo)原點(diǎn)).證明:總存在一個(gè)確定的圓與直線l相切,并求該圓的方程19.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍20.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小21.(12分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn);(3)若存在,使得,求的取值范圍22.(10分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,若問(wèn)題中的存在,求實(shí)數(shù)的取值范圍;若問(wèn)題中的不存在,請(qǐng)說(shuō)明理由設(shè)等差數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為,___________,,,是否存在實(shí)數(shù),對(duì)任意都有?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.2、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C3、A【解析】由方程確定曲線的形狀,然后轉(zhuǎn)化為求圓上的點(diǎn)到直線距離的最大值【詳解】由曲線方程為知曲線關(guān)于軸成軸對(duì)稱,關(guān)于原點(diǎn)成中心對(duì)稱圖形,在第一象限內(nèi),方程化為,即,在第一象限內(nèi),曲線是為圓心,為半徑的圓在第一象限的圓?。ê鴺?biāo)軸上的點(diǎn)),實(shí)際上整個(gè)曲線就是這段圓弧及其關(guān)于坐標(biāo)軸.原點(diǎn)對(duì)稱的圖形加上原點(diǎn),點(diǎn)到直線的距離為,所以所求最大值為故選:A4、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)?,可得,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.5、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A6、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項(xiàng),以1為公差的等差數(shù)列,∴,即,∴當(dāng)時(shí),,當(dāng)時(shí),也適合上式,所以故選:A.7、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A8、B【解析】根據(jù)橢圓的定義可得:,所以的周長(zhǎng)等于【詳解】因?yàn)?,,所以,故的周長(zhǎng)為故選:B9、D【解析】計(jì)算,然后等價(jià)于在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,然后計(jì)算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個(gè)不同的極值點(diǎn),則在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,故,解得:,故選:D.【點(diǎn)睛】本題考查根據(jù)函數(shù)極值點(diǎn)個(gè)數(shù)求參,考查計(jì)算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.10、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對(duì)稱點(diǎn),利用連點(diǎn)之間相對(duì)最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題11、A【解析】根據(jù)等差中項(xiàng)寫(xiě)出式子,由遞推式及求和公式寫(xiě)出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項(xiàng)求和是首項(xiàng)為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因?yàn)?,,,即,所以,則,當(dāng)且僅當(dāng)時(shí),,符合題意,故的最大值為.故選:A.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問(wèn)題能力,屬于難題.12、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對(duì)四個(gè)選項(xiàng)得答案【詳解】解:對(duì)于A:若,則或,故A錯(cuò)誤;對(duì)于B:若,則或與相交,故B錯(cuò)誤;對(duì)于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對(duì)于D:若則與平行、相交、或異面,故D錯(cuò)誤;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】聯(lián)立直線與雙曲線方程,可知二次項(xiàng)系數(shù)不為零、判別式大于零、兩根之和與兩根之積均大于零,據(jù)此構(gòu)造不等式組,解不等式組求得結(jié)果.詳解】將代入雙曲線方程整理可得:設(shè)直線與雙曲線右支交于兩點(diǎn),解得:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)直線與雙曲線位置關(guān)系求解參數(shù)范圍的問(wèn)題,屬于基礎(chǔ)題.14、9【解析】根據(jù)拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,求得拋物線方程.再由和,得到點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標(biāo),再由兩點(diǎn)間距離公式求解.【詳解】由拋物線C:的焦點(diǎn)F到準(zhǔn)線的距離為4,所以,所以拋物線方程為.因?yàn)?,,所以點(diǎn)P的縱坐標(biāo)為1,代入拋物線方程,可得點(diǎn)P的橫坐標(biāo)為,不妨設(shè),則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點(diǎn)睛】本題主要考查拋物線的方程與性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.15、,,,【解析】先寫(xiě)出與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間,再寫(xiě)出其全部子集即可.【詳解】與事件“一個(gè)正面(朝上)一個(gè)反面(朝上)”對(duì)應(yīng)的樣本空間為,此空間的子集為,,,故答案為:,,,16、【解析】通過(guò)分離參數(shù),得到關(guān)于x的不等式;再構(gòu)造函數(shù),通過(guò)導(dǎo)數(shù)求得函數(shù)的最值,進(jìn)而求得a的取值范圍【詳解】因?yàn)?,代入解析式可得分離參數(shù)a可得令()則,令解得所以當(dāng)0<x<1,,所以h(x)在(0,1)上單調(diào)遞減當(dāng)1<x,,所以h(x)在(1,+∞)上單調(diào)遞增,所以h(x)在x=1時(shí)取得極小值,也即最小值所以h(x)≥h(1)=4因?yàn)閷?duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范圍為【點(diǎn)睛】本題綜合考查了函數(shù)與導(dǎo)數(shù)的應(yīng)用,分離參數(shù)法,利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)首先將命題,化簡(jiǎn),然后由為真可得,均為真,取交集即可求出實(shí)數(shù)的取值范圍;(2)將是的充分不必要條件轉(zhuǎn)化為是的必要不充分條件,進(jìn)而將問(wèn)題轉(zhuǎn)化為,從而求出實(shí)數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當(dāng)時(shí),命題,若命題為真,則,解得,所以,因?yàn)闉檎?,所以,均為真,所以,所以,所以?shí)數(shù)的取值范圍為(2)因?yàn)槭堑某浞植槐匾獥l件,所以是的必要不充分條件,所以,所以或,所以,所以實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題主要考查根據(jù)真值表判斷復(fù)合命題中的單個(gè)命題的真假,根據(jù)充分不必要條件求參數(shù)的取值范圍,同時(shí)考查一元二次不等式的解法,分式不等式的解法.第(2)問(wèn)關(guān)鍵是將問(wèn)題等價(jià)轉(zhuǎn)化為兩個(gè)集合間的真包含關(guān)系18、(1);(2)理由見(jiàn)解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關(guān)系,再求出原點(diǎn)O到直線l的距離即可推理作答.【小問(wèn)1詳解】因,則,點(diǎn)在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標(biāo)準(zhǔn)方程是:.【小問(wèn)2詳解】由消去y并整理得:,依題意,,設(shè),,因,則,于是得,此時(shí),,則原點(diǎn)O到直線l的距離,所以,存在以原點(diǎn)O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點(diǎn)睛】思路點(diǎn)睛:涉及動(dòng)直線與圓錐曲線相交滿足某個(gè)條件問(wèn)題,可設(shè)直線方程為,再與圓錐曲線方程聯(lián)立結(jié)合已知條件探求k,m的關(guān)系,然后推理求解.19、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問(wèn)結(jié)論求出,從而求出答案.【小問(wèn)1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)?,所以平面DEF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問(wèn)2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問(wèn)可知:,則其中,且,,故,由第一問(wèn)可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對(duì)于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來(lái)進(jìn)行求解,若不容易建立坐標(biāo)系時(shí),也可以通過(guò)基底表達(dá)出各個(gè)向量,進(jìn)而求出答案.20、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】證明:因?yàn)闉榈闹悬c(diǎn),,所以,又,所以四邊形為平行四邊形,因?yàn)?,所以平行四邊形是矩形,所以,因?yàn)?,所以,又因?yàn)槠矫嫫矫?,平面平面面,所以平面,因?yàn)槊?,所以,又因?yàn)?,平面,所以平面,因?yàn)槠矫?,所以平面平面;【小?wèn)2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個(gè)法向量,由則,令,則,所以,設(shè)平面的一個(gè)法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;21、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見(jiàn)解析(3)【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo)通分化簡(jiǎn),求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因?yàn)榇嬖诹泓c(diǎn),所以,從而.在對(duì)進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對(duì)進(jìn)行求導(dǎo),在對(duì)進(jìn)行分情況討論,即可得的得到答案.【小問(wèn)1詳解】函數(shù)的定義域?yàn)?,,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,無(wú)極大值【小問(wèn)2詳解】由(1)知,在區(qū)間上的最小值為因?yàn)榇嬖诹泓c(diǎn),所以,從而當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn)當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上僅有一個(gè)零點(diǎn)綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn)【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 橡膠鞋行業(yè)標(biāo)準(zhǔn)制定與質(zhì)量監(jiān)管-洞察分析
- 單位補(bǔ)繳社保承諾書(shū)(6篇)
- 舞蹈教育信息化探索-洞察分析
- 虛擬現(xiàn)實(shí)渲染技術(shù)-洞察分析
- 保險(xiǎn)金融行業(yè)理賠流程心得
- 兒童家具的個(gè)性化定制化設(shè)計(jì)趨勢(shì)
- 辦公環(huán)境中的智能家居安全解決方案
- 從零到一創(chuàng)新型實(shí)驗(yàn)室的安全教育培訓(xùn)全流程解析
- 創(chuàng)新驅(qū)動(dòng)的科技教育模式探索
- 2025建筑工程公司集體合同集體合同適用于分公司
- 《園林政策與法規(guī)》課件
- 揚(yáng)塵防治(治理)監(jiān)理實(shí)施細(xì)則(范本)
- 讀書(shū)分享《終身成長(zhǎng)》課件
- GB/T 44843-2024在用自動(dòng)扶梯和自動(dòng)人行道安全評(píng)估規(guī)范
- 廣東省廣州市2023-2024學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 宮頸癌護(hù)理查房-5
- 律師事務(wù)所整體轉(zhuǎn)讓協(xié)議書(shū)范文
- 照明設(shè)備課件教學(xué)課件
- 2023-2024學(xué)年全國(guó)初中七年級(jí)下地理人教版期中考試試卷(含答案解析)
- 債券入門(mén)基礎(chǔ)知識(shí)單選題100道及答案解析
- 堆載預(yù)壓施工方案
評(píng)論
0/150
提交評(píng)論