2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題含解析_第1頁
2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題含解析_第2頁
2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題含解析_第3頁
2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題含解析_第4頁
2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆山東省棗莊市現(xiàn)代實(shí)驗(yàn)學(xué)校數(shù)學(xué)高二上期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.2.函數(shù)圖象的一個對稱中心為()A. B.C. D.3.世界上最早在理論上計(jì)算出“十二平均律”的是我國明代杰出的律學(xué)家朱載堉,他當(dāng)時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.2204.已知等比數(shù)列中,,,則首項(xiàng)()A. B.C. D.05.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和6.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值7.已知直線過點(diǎn),當(dāng)直線與圓有兩個不同的交點(diǎn)時,其斜率的取值范圍是()A. B.C. D.8.已知等比數(shù)列的前項(xiàng)和為,首項(xiàng)為,公比為,則()A. B.C. D.9.若向量,,則()A. B.C. D.10.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.11.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.12.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項(xiàng)和.若,則__________14.直線的傾斜角的取值范圍是______.15.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.16.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(diǎn)(1)求證:;(2)若為中點(diǎn),平面與側(cè)棱于點(diǎn),且,求四棱錐的體積18.(12分)在平面直角坐標(biāo)系中,動點(diǎn)到點(diǎn)的距離和它到直線的距離之比為.動點(diǎn)的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點(diǎn)分別為,點(diǎn)是曲線上異于的一點(diǎn),直線的斜率為,直線的斜率為,求證:為定值.19.(12分)已知,是橢圓:的左、右焦點(diǎn),離心率為,點(diǎn)A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點(diǎn),過的直線與橢圓C交于兩個不同點(diǎn)P、Q,直線BP與x軸交于點(diǎn)M,直線BQ與x軸交于點(diǎn)N,判斷是否為定值.若是,求出定值,若不是,請說明理由.20.(12分)p:方程有兩個不等的負(fù)實(shí)數(shù)根;q:方程無實(shí)數(shù)根,若為真命題,為假命題,求實(shí)數(shù)m的取值范圍、21.(12分)如圖,在正方體中,E為的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值22.(10分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實(shí)數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用復(fù)數(shù)的除法化簡復(fù)數(shù),利用復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B2、D【解析】要求函數(shù)圖象的一個對稱中心的坐標(biāo),關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進(jìn)行取值,進(jìn)而結(jié)合選項(xiàng)即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點(diǎn)睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.3、C【解析】依題意,每一個單音的頻率構(gòu)成一個等比數(shù)列,由,算出公比,結(jié)合,即可求出.【詳解】設(shè)第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構(gòu)成一個等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查等比數(shù)列通項(xiàng)公式的運(yùn)算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項(xiàng)公式,列出方程組,即可求得,進(jìn)而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B5、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D6、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域?yàn)?,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A7、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點(diǎn)故選:A8、D【解析】根據(jù)求解即可.【詳解】因?yàn)榈缺葦?shù)列,,所以.故選:D9、D【解析】由向量數(shù)量積的坐標(biāo)運(yùn)算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D10、B【解析】雙曲線的離心率為,漸進(jìn)性方程為,計(jì)算得,故漸進(jìn)性方程為.【考點(diǎn)定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).11、A【解析】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性即可解不等式【詳解】由則函數(shù)在上單調(diào)遞增又,所以,解得故選:A12、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因?yàn)槭堑炔顢?shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項(xiàng)公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項(xiàng)和公式:可得:.故答案:.【點(diǎn)睛】本題主要考查了求等差數(shù)列的前項(xiàng)和,解題關(guān)鍵是掌握等差數(shù)列的前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.14、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關(guān)系,即可求出【詳解】可化為:,所以,由于,結(jié)合函數(shù)在上的圖象,可知故答案為:【點(diǎn)睛】本題主要考查斜率與傾斜角的關(guān)系的應(yīng)用,以及直線的一般式化斜截式,屬于基礎(chǔ)題15、不在同一直線上的三點(diǎn)確定一個平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個平面.故答案為:不在同一直線上的三點(diǎn)確定一個平面.16、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點(diǎn),平面,計(jì)算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因?yàn)樗倪呅螢檎叫危瑒t,因?yàn)閭?cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因?yàn)椋矫?,平面,所以,平面,因?yàn)槠矫?,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點(diǎn),所以,,所以,由平面,平面,所以,從而,正三角形中,是中點(diǎn),,即,,所以平面,因?yàn)?,所?18、(1),曲線是以為焦點(diǎn)的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利用斜率公式及橢圓方程計(jì)算即得.【小問1詳解】設(shè)點(diǎn)坐標(biāo)為,根據(jù)題意,得,左右同時平方,得,整理得,,即,所以曲線的方程是,曲線是以為焦點(diǎn)的橢圓.【小問2詳解】由題意得,設(shè)的坐標(biāo)是,因?yàn)辄c(diǎn)在曲線上,所以,因?yàn)椋?,所以為定?19、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設(shè)直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點(diǎn)的坐標(biāo)寫出直線,的方程,進(jìn)而知點(diǎn),的坐標(biāo),再結(jié)合韋達(dá)定理,進(jìn)行化簡,即可得解【小問1詳解】解:因?yàn)榈闹荛L為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設(shè)其方程為,,,,,聯(lián)立,得,所以,,因?yàn)辄c(diǎn)為,所以直線的方程為,所以點(diǎn),,直線的方程為,所以點(diǎn),,所以,即為定值20、【解析】利用復(fù)合命題的真假推出兩個命題為一真一假,求出m的范圍即可.【詳解】:方程有兩個不等的負(fù)實(shí)數(shù)根,解得,:方程無實(shí)數(shù)根,解得,所以:,:或.因?yàn)闉檎婷},為假命題,所以真假,或假真.(1)當(dāng)真假時,即真為真,所以,解得;(2)當(dāng)假真時,即真為真,所以,解得.綜上,取值范圍為21、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;也可利用空間向量計(jì)算證明;(Ⅱ)可以將平面擴(kuò)展,將線面角轉(zhuǎn)化,利用幾何方法作出線面角,然后計(jì)算;也可以建立空間直角坐標(biāo)系,利用空間向量計(jì)算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標(biāo)法以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則、、、,,,設(shè)平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設(shè)正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設(shè)的中點(diǎn)為F,延長,易證三線交于一點(diǎn)P因?yàn)椋灾本€與平面所成的角,即直線與平面所成的角設(shè)正方體的棱長為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設(shè)正方體的棱長為2,點(diǎn)到平面的距離為h,在中,,,所以,易得由,得,解得,設(shè)直線與平面所成的角為,所以【整體點(diǎn)評】(Ⅰ)的方法一使用線面平行的判定定理證明,方法二使用空間向量坐標(biāo)運(yùn)算進(jìn)行證明;(II)第一種方法中使用純幾何方法,適合于沒有學(xué)習(xí)空間向量之前的方法,有利用培養(yǎng)學(xué)生的集合論證和空間想象能力,第二種方法使用空間向量方法,兩小題前后連貫,利用計(jì)算論證和求解,定為最優(yōu)解法;方法三在幾何法的基礎(chǔ)上綜合使用體積方法,計(jì)算較為簡潔;方法四不作任何輔助線,僅利用正余弦定理和體積公式進(jìn)行計(jì)算,省卻

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論