![2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view/99b4ea30024fcc26a3ef2324bf2e44cf/99b4ea30024fcc26a3ef2324bf2e44cf1.gif)
![2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view/99b4ea30024fcc26a3ef2324bf2e44cf/99b4ea30024fcc26a3ef2324bf2e44cf2.gif)
![2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view/99b4ea30024fcc26a3ef2324bf2e44cf/99b4ea30024fcc26a3ef2324bf2e44cf3.gif)
![2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view/99b4ea30024fcc26a3ef2324bf2e44cf/99b4ea30024fcc26a3ef2324bf2e44cf4.gif)
![2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view/99b4ea30024fcc26a3ef2324bf2e44cf/99b4ea30024fcc26a3ef2324bf2e44cf5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南株洲市第十八中學高二數(shù)學第一學期期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》是我國古代的數(shù)學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成遞增的等差數(shù)列,這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.16C.18 D.202.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.23.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.34.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.5.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結論,其中正確的是()A.由大到小的第八個矩形塊中應填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是6.在等比數(shù)列{}中,,,則=()A.9 B.12C.±9 D.±127.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結果為()A. B.C. D.8.我國古代數(shù)學名著《算法統(tǒng)宗》中說:“九百九十六斤棉,贈分八子做盤纏,次第每人多十七,要將第八數(shù)來言,務要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈送給8個子女做旅費,從第一個孩子開始,以后每人依次多17斤,直到第8個孩子為止.分配時一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說閑話.”在這個問題中,第5個孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤9.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為10.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.11.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.12.已知函數(shù)的導函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零二、填空題:本題共4小題,每小題5分,共20分。13.在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點,EF=,則異面直線AD與BC所成角的大小為____.14.已知命題p:若,則,那么命題p的否命題為______15.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.16.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:18.(12分)已知圓M:的圓心為M,圓N:的圓心為N,一動圓與圓N內(nèi)切,與圓M外切,動圓的圓心E的軌跡為曲線C(1)求曲線C的方程;(2)已知點,直線l與曲線C交于A,B兩點,且,直線l是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由19.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程20.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程21.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程22.(10分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題可知這是一個等差數(shù)列,前項和,,列式求基本量即可.【詳解】設每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:B2、D【解析】由雙曲線的離心率為3和,求得,化簡,結合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當且僅當,即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.3、C【解析】由可得出,利用空間向量數(shù)量積的坐標運算可得出關于實數(shù)的等式,由此可解得實數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C4、C【解析】先根據(jù)等腰三角形的性質得,再根據(jù)雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎題.5、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.6、D【解析】根據(jù)題意,設等比數(shù)列的公比為,由等比數(shù)列的性質求出,再求出【詳解】根據(jù)題意,設等比數(shù)列的公比為,若,,則,變形可得,則,故選:7、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C8、A【解析】根據(jù)等差數(shù)列的前n項和公式、等差數(shù)列的通項公式進行求解即可.【詳解】依題意得,八個子女所得棉花斤數(shù)依次構成等差數(shù)列,設該等差數(shù)列為,公差為d,前n項和為,第一個孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A9、D【解析】在正方體中,利用線面關系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點睛】本題考查了線面的空間位置關系及空間角,做出圖形分析是關鍵,考查推理能力與空間想象能力10、C【解析】利用數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質,考查推理能力與計算能力,屬于中檔題11、D【解析】利用最值的含義轉化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當時,不等式化簡為恒成立,所以,當時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D12、B【解析】根據(jù)導函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點,即可判斷;【詳解】解:由導函數(shù)的圖象可知,當時,當時,當時,當或時,則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知找到異面直線所成角的平面角,再運用余弦定理可得答案.【詳解】解:設BD的中點為O,連接EO,F(xiàn)O,所以,則∠EOF(或其補角)就是異面直線AD,BC所成的角的平面角,又因為EO=AD=1,F(xiàn)O=BC=,EF=.根據(jù)余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.14、若,則【解析】直接利用否命題的定義,對原命題的條件與結論都否定即可得結果【詳解】因為命題:若,則,所以否定條件與結論后,可得命題的否命題為若,則,故答案為若,則,【點睛】本題主要考查命題的否命題,意在考查對基礎知識的掌握與應用,屬于基礎題15、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設點,則,不妨設點為直線上的點,則,,所以,.故答案為:.16、①②【解析】假設與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導數(shù),結合函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,參變分離后,轉化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數(shù),轉化為利用導數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設,,,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設,則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導數(shù)中的雙變量問題,往往采用分析法,轉化為函數(shù)與不等式的關系,通過構造函數(shù),結合函數(shù)的導數(shù),即可證明.18、(1),;(2)過,.【解析】(1)根據(jù)兩圓內(nèi)切和外切的性質,結合雙曲線的定義進行求解即可;(2)設出直線l的方程與雙曲線的方程聯(lián)立,利用一元二次方程根與系數(shù)關系,結合平面向量數(shù)量積的坐標表示公式進行求解判斷即可.【小問1詳解】設圓E的圓心為,半徑為r,則,,所以由雙曲線定義可知,E的軌跡是以M,N為焦點、實軸長為6的雙曲線的右支,所以動圓的圓心E的軌跡方程為,;【小問2詳解】設,,直線l的方程為由得,且,故又,所以又,,所以,即.又故或若,則直線l的方程為,過點,與題意矛盾,所以,故,所以直線l的方程為,過點【點睛】關鍵點睛:利用一元二次方程根與系數(shù)的關系是解題的關鍵.19、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設,,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設橢圓C的方程為,記,則,,,,,曲線的標準方程為【小問2詳解】根據(jù)橢圓對稱性可知直線l斜率存在,設,則,由①-②得,,∴l(xiāng):,即.20、【解析】先根據(jù)題意設直線方程,由條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- N-Ethyl-4-methoxyamphetamine-hydrochloride-生命科學試劑-MCE-8599
- 2025年度商業(yè)門面使用權轉讓合同
- 2025年度電梯應急救援預案制定與演練合同
- 2025年度解除租賃合同解除條件爭議調(diào)解協(xié)議書
- 施工現(xiàn)場安全風險管控制度
- 科技發(fā)展趨勢宇宙生命探索與地球應用
- 個人房屋租賃給企業(yè)合同范例
- 兩子女離婚財產(chǎn)分割合同范本
- 2025屆畢業(yè)生就業(yè)實習合同協(xié)議
- 個人委托代理合同書樣本
- 二零二五版電商企業(yè)兼職財務顧問雇用協(xié)議3篇
- 課題申報參考:流視角下社區(qū)生活圈的適老化評價與空間優(yōu)化研究-以沈陽市為例
- 《openEuler操作系統(tǒng)》考試復習題庫(含答案)
- T-CISA 402-2024 涂鍍產(chǎn)品 切口腐蝕試驗方法
- DB11-T 291-2022日光溫室建造規(guī)范
- 2021-2022學年山東省淄博市高二(下)期末英語試卷(附答案詳解)
- 北師大版高中數(shù)學選修4-6初等數(shù)論初步全套課件
- 紀檢知識答題測試題及答案
- 創(chuàng)傷急救-止血、包扎課件
- 大數(shù)據(jù)背景下網(wǎng)絡輿情成因及治理
- 道教系統(tǒng)諸神仙位寶誥全譜
評論
0/150
提交評論