




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆黑龍江省鶴崗市高二上數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.2.命題“”為真命題一個充分不必要條件是()A. B.C. D.3.已知定義在上的函數(shù)的導函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.4.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.5.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.6.等差數(shù)列的首項為正數(shù),其前n項和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項是第9項7.已知數(shù)列是等差數(shù)列,其前n項和為,則下列說法錯誤的是()A.數(shù)列一定是等比數(shù)列 B.數(shù)列一定是等差數(shù)列C.數(shù)列一定是等差數(shù)列 D.數(shù)列可能是常數(shù)數(shù)列8.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.9.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.10.橢圓與雙曲線有公共的焦點、,與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.11.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離12.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點且與雙曲線有公共漸近線的雙曲線方程為_________14.已知函數(shù)則的值為.____15.已知等差數(shù)列的前項和為,則數(shù)列的前2022項的和為___________.16.如圖所示,直線是曲線在點處的切線,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的下焦點為、上焦點為,其離心率.過焦點且與x軸不垂直的直線l交橢圓于A、B兩點(1)求實數(shù)m的值;(2)求△ABO(O為原點)面積的最大值18.(12分)已知圓經(jīng)過點和,且圓心在直線上(1)求圓的標準方程;(2)直線過點,且與圓相切,求直線的方程;(3)設(shè)直線與圓相交于兩點,點為圓上的一動點,求的面積的最大值19.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.20.(12分)在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值21.(12分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點,線段AB的中點為M,是否存在常數(shù),使恒成立,并說明理由22.(10分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.2、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B3、D【解析】構(gòu)造函數(shù),用導數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.4、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結(jié)果.【詳解】因為雙曲線的離心率,所以,設(shè)為拋物線焦點,則,拋物線準線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.5、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A6、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項A,∵有最大值,∴等差數(shù)列一定有負數(shù)項,∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項A正確;對于選項B,∵,且,∴,,∴,,則使的最大的n為17,故選項B錯誤;對于選項C,∵,,∴,,故中最大,故選項C正確;對于選項D,∵,,∴,,故數(shù)列中的最小項是第9項,故選項D正確.故選:B.7、B【解析】可根據(jù)已知條件,設(shè)出公差為,選項A,可借助等比數(shù)列的定義使用數(shù)列是等差數(shù)列,來進行判定;選項B,數(shù)列,可以取,即可判斷;選項C,可設(shè),表示出再進行判斷;選項D,可采用換元,令,求得的關(guān)系即可判斷.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,選項A,數(shù)列是等差數(shù)列,那么為常數(shù),又,則數(shù)列一定是等比數(shù)列,所以選項A正確;選項B,當時,數(shù)列不存在,故該選項錯誤;選項C,數(shù)列是等差數(shù)列,可設(shè)(A、B為常數(shù)),此時,,則為常數(shù),故數(shù)列一定是等差數(shù)列,所以該選項正確;選項D,,則,當時,,此時數(shù)列可能是常數(shù)數(shù)列,故該選項正確.故選:B.8、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A9、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D10、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實軸長為,因為與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.11、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A12、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意設(shè)所求雙曲線的方程為,∵點在雙曲線上,∴,∴所求的雙曲線方程為,即答案:14、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導數(shù)的運算15、【解析】先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出首項和公差,得出前項和,再由裂項相消的方法,即可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得,因此,所以,所以數(shù)列的前2022項的和為.故答案:.16、##【解析】利用直線所過點求得直線的斜率,從而求得.【詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2)﹒【解析】(1)根據(jù)已知條件得,,結(jié)合離心率,即可解得答案(2)設(shè)直線的方程,與橢圓方程聯(lián)立,利用弦長公式以及三角形的面積公式,基本不等式即可得出答案【小問1詳解】由題意可得,,,∵離心率,∴,∵,∴,解得【小問2詳解】由(1)知,橢圓,上焦點,設(shè),,,,直線的方程為:,聯(lián)立,得,∴,,∴,∴,∴,當且僅當,即時等號成立,∴為原點)面積的最大值為18、(1)(2)或(3)【解析】(1)解法一,根據(jù)題意設(shè)圓的標準方程為,進而待定系數(shù)法求解即可;解法二:由題知圓心在線段的垂直平分線上,進而結(jié)合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進而到直線距離的最大值為,再計算面積即可.【小問1詳解】解:解法一:設(shè)圓的標準方程為,由已知得,解得,所以圓的標準方程為;解法二:由圓經(jīng)過點和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標準方程為;【小問2詳解】解:當直線的斜率存在時,設(shè),即,由直線與圓相切,得,解得,此時,當直線的斜率不存在時,直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點到直線距離的最大值為,所以的面積的最大值19、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關(guān)系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設(shè)平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.20、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結(jié)果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結(jié)合韋達定理可得結(jié)果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1);(2)存在,理由見解析.【解析】(1)利用離心率,短軸長求出a,b,即可求得橢圓方程.(2)聯(lián)立直線與橢圓方程,利用韋達定理計算判定,由M為線段AB中點即可確定存在常數(shù)推理作答.【小問1詳解】因橢圓的短軸長是2,則,而離心率,解得,所以橢圓方程為.【小問2詳解】存在常數(shù),使恒成立,
由消去
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考文科一卷試題及答案
- 交建投筆試題目及答案
- 十四單元測試題及答案
- 深度分析美容行業(yè)發(fā)展趨勢的考試知識試題及答案
- 藥物治療實驗設(shè)計試題及答案
- 從容應(yīng)對語文考試小學六年級試題及答案
- 探索美容師考試的學科整合與公務(wù)員省考試題及答案
- 備考小學六年級語文試題及答案
- 教培行業(yè)教學教研
- 二手車評估中常見誤區(qū)與應(yīng)對策略試題及答案
- 青少年心理咨詢的特殊挑戰(zhàn)試題及答案
- 2025年中國人壽招聘筆試筆試參考題庫附帶答案詳解
- 2024-2025學年高中化學上學期第十四周 化學反應(yīng)速率教學實錄
- 2025年初中地理中考押題卷(含解析)
- 火鍋店創(chuàng)業(yè)計劃書:營銷策略
- 交通大數(shù)據(jù)分析-深度研究
- 基礎(chǔ)護理學試題及標準答案
- DB11-T 1754-2024 老年人能力綜合評估規(guī)范
- 招聘團隊管理
- 【課件】用坐標描述簡單幾何圖形+課件人教版七年級數(shù)學下冊
- 電商運營崗位聘用合同樣本
評論
0/150
提交評論