2024屆河北省“名校聯盟”高二上數學期末預測試題含解析_第1頁
2024屆河北省“名校聯盟”高二上數學期末預測試題含解析_第2頁
2024屆河北省“名校聯盟”高二上數學期末預測試題含解析_第3頁
2024屆河北省“名校聯盟”高二上數學期末預測試題含解析_第4頁
2024屆河北省“名校聯盟”高二上數學期末預測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河北省“名校聯盟”高二上數學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將一顆骰子先后拋擲2次,觀察向上的點數,則點數之和是4的倍數但不是3的倍數的概率為()A. B.C. D.2.下列關于函數及其圖象的說法正確的是()A.B.最小正周期為C.函數圖象的對稱中心為點D.函數圖象的對稱軸方程為3.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.4.函數的圖象大致是()A. B.C. D.5.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件6.為了調查修水縣2019年高考數學成績,在高考后對我縣6000名考生進行了抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數學成績作為一個樣本,這項調查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡單的隨機抽樣法7.若,則下列不等式不能成立是()A. B.C. D.8.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.10.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-211.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.12.我國古代數學名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關,初行健步不為難次日腳痛減一半,六朝才得到其關.要見每朝行里數,請公仔細算相還.意為:某人步行到378里的要塞去,第一天走路強壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達目的地.請仔細計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.12二、填空題:本題共4小題,每小題5分,共20分。13.過點,且垂直于的直線方程為_______________.14.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數的取值范圍為______.15.已知函數的導函數為,,,則的解集為___________.16.已知等差數列的前n項和為公差為d,且滿足則的取值范圍是_____________,的取值范圍是_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.18.(12分)設為數列的前n項和,且滿足(1)求證:數列為等差數列;(2)若,且成等比數列,求數列的前項和19.(12分)已知數列的前項和為,且.(1)求的通項公式;(2)求數列的前項和.20.(12分)已知函數f(x)=(1)求函數f(x)在x=1處的切線方程;(2)求證:21.(12分)已知數列滿足,(1)設,求證:數列是等比數列;(2)求數列的前項和22.(10分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】基本事件總數,再利用列舉法求出點數之和是4的倍數但不是3的倍數包含的基本事件的個數,由此能求出點數之和是4的倍數但不是3的倍數的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數之和,基本事件總數,點數之和是4的倍數但不是3的倍數包含的基本事件有:,,,,,,,,共8個,則點數之和是4的倍數但不是3的倍數的概率為故選:B2、D【解析】化簡,利用正弦型函數的性質,依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數圖象的對稱中心為點,C選項錯誤;令,則,所以函數圖象的對稱軸方程為,D選項正確故選:D3、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A4、A【解析】根據函數的定義域及零點的情況即可得到答案.【詳解】函數的定義域為,則排除選項、,當時,,則在上單調遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.5、A【解析】根據條件,求得a的范圍,根據充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A6、B【解析】考生分為幾個不同的類型或層次,由此可以確定抽樣方法;【詳解】6000名考生進行抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數學成績作為一個樣本又文科考生、理科考生、藝術和體育類考生會存在差異,采用分層抽樣法較好故選:B.【點睛】本題主要考查的是分層抽樣,掌握分層抽樣的有關知識是解題的關鍵,屬于基礎題.7、C【解析】利用不等式的性質可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.8、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A9、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C10、C【解析】以為建立平面直角坐標系,設,把向量的數量積用坐標表示后可得最小值【詳解】如圖,以為建立平面直角坐標系,則,設,,,,,∴,∴當時,取得最小值故選:C【點睛】本題考查向量的數量積,解題方法是建立平面直角坐標系,把向量的數量積轉化為坐標表示11、D【解析】設,由雙曲線的性質可得的值,再由,根據勾股定理可得的值,進而求得,最后利用等面積法,即可求解【詳解】設,,為雙曲線的兩個焦點,設焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質,難度不大.12、C【解析】每天所走的里程構成公比為的等比數列,設第一天走了里,利用等比數列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構成公比為的等比數列.第一天走了里,第4天走了.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.14、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據橢圓和雙曲線的定義即可解出。【詳解】∵為真,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.15、【解析】根據,構造函數,利用其單調性求解.【詳解】因為,所以,令,則,,所以是減函數,又,即,,所以,所以,則的解集為故答案為:16、①.②.【解析】通過判斷出,進而將化為基本量求得答案;然后用基本量將化簡,進而通過的范圍求得答案.【詳解】由,,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)不一定共線,理由見解析【解析】(1)由橢圓定義可得a,利用∽△BOA可解;(2)考察軸時的情況,分析可知M,,N不一定共線.【小問1詳解】由題意得,,設,,代入橢圓C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以橢圓C的方程為.【小問2詳解】當軸時,,設,,則由已知條件和方程,可得,整理得,,解得或.由于,所以當時,點M,,N共線;所以當時,點M,,N不共線.所以點M,,N不一定共線.18、(1)證明見解析;(2)答案見解析.【解析】(1)利用給定的遞推公式,結合“當時,”變形,再利用等差中項的定義推理作答.(2)利用(1)的結論,利用等比中項的定義列式計算,再利用等差數列前n項和公式計算作答.【小問1詳解】依題意,,當時,有,兩式相減得:,同理可得,于是得,即,而當時,,所以數列為等差數列.【小問2詳解】由(1)知數列為等差數列,設其首項為,公差為d,依題意,,解得或,當時,,當時,.19、(1);(2).【解析】(1)利用,結合已知條件,即可容易求得通項公式;(2)根據(1)中所求,對數列進行裂項求和,即可求得.【小問1詳解】當時,.當時,,因為當時,,所以.【小問2詳解】因為,所以,故數列的前項和.20、(1)y=5x-1;(2)證明見解析【解析】(1)求出導函數,求出切線的斜率,切點坐標,然后求切線方程(2)不等式化簡為.設,求出導函數,判斷函數的單調性求解函數的最值,然后證明即可【詳解】解:(1)的定義域為,的導數由(1)可得,則切點坐標為,所求切線方程為(2)證明:即證.設,則,由,得當時,;當時,在上單調遞增,在上單調遞減,(1),即不等式成立,則原不等式成立21、(1)證明見解析;(2).【解析】(1)將變形為,得到為等比數列,(2)由(1)得到的通項公式,用錯位相減法求得【詳解】(1)由,,可得,因為則,,可得是首項為,公比為的等比數列,(2)由(1),由,可得,,,上面兩式相減可得:,則【點睛】數列求和的方法技巧:(1)倒序相加:用于等差數列、與二項式系數、對稱性相關聯的數列的求和(2)錯位相減:用于等差數列與等比數列的積數列的求和(3)分組求和:用于若干個等差或等比數列和或差數列的求和(4)裂項相消法:用于通項能變成兩個式子相減,求和時能前后相消的數列求和.22、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論