版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省佛山市華南師范大學(xué)附中南海實(shí)驗(yàn)高級(jí)中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線離心率為2,過(guò)點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.2.已知函數(shù),則()A.3 B.C. D.3.已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P在拋物線上,直線PF交x軸于Q點(diǎn),且,則點(diǎn)P到準(zhǔn)線l的距離為()A.4 B.5C.6 D.74.設(shè),向量,,,且,,則()A. B.C.3 D.45.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.6.已知拋物線y2=4x的焦點(diǎn)為F,定點(diǎn),M為拋物線上一點(diǎn),則|MA|+|MF|的最小值為()A.3 B.4C.5 D.67.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.8.函數(shù)的圖象如圖所示,是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是()A B.C. D.9.()A. B.C. D.10.已知拋物線上一點(diǎn)M與焦點(diǎn)間的距離是3,則點(diǎn)M的縱坐標(biāo)為()A.1 B.2C.3 D.411.一道數(shù)學(xué)試題,甲、乙兩位同學(xué)獨(dú)立完成,設(shè)命題是“甲同學(xué)解出試題”,命題是“乙同學(xué)解出試題”,則命題“至少一位同學(xué)解出試題”可表示為()A. B.C. D.12.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,命題p:,;命題q:,,且為真命題,則a的取值范圍為______14.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對(duì)任意自然數(shù)都有,則的值為______.15.已知數(shù)列的前項(xiàng)和.則數(shù)列的通項(xiàng)公式為_______.16.已知曲線在處的切線方程為,則________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)兩人下棋,每局均無(wú)和棋且獲勝的概率為,某一天這兩個(gè)人要進(jìn)行一場(chǎng)五局三勝的比賽,勝者贏得2700元獎(jiǎng)金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因?yàn)槠渌露K止比賽,間,怎么分獎(jiǎng)金才公平?18.(12分)某情報(bào)站有.五種互不相同的密碼,每周使用其中的一種密碼,且每周都是從上周末使用的四種密碼中等可能地隨機(jī)選用一種.設(shè)第一周使用密碼,表示第周使用密碼的概率(1)求;(2)求證:為等比數(shù)列,并求的表達(dá)式19.(12分)在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)為,且過(guò)點(diǎn),橢圓的上、下頂點(diǎn)分別為,右頂點(diǎn)為,直線過(guò)點(diǎn)且垂直于軸(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)在橢圓上(且在第一象限),直線與交于點(diǎn),直線與軸交于點(diǎn),試問:是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由20.(12分)在平面直角坐標(biāo)系中,已知點(diǎn).點(diǎn)M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過(guò)點(diǎn),與軌跡C分別交于點(diǎn)M、N,與直線交于點(diǎn)Q,求證:.21.(12分)在①;②;③;這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,然后解答補(bǔ)充完整的題.注:若選擇多個(gè)條件分別解答,則按第一個(gè)解答計(jì)分.已知,且(只需填序號(hào)).(1)求的值;(2)求展開式中的奇數(shù)次冪的項(xiàng)的系數(shù)之和22.(10分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C2、B【解析】由導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B3、C【解析】根據(jù)題干條件得到相似,進(jìn)而得到,求出點(diǎn)P到準(zhǔn)線l的距離.【詳解】由題意得:,準(zhǔn)線方程為,因?yàn)?,所以,故點(diǎn)P到準(zhǔn)線l的距離為.故選:C4、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)椋傻?,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.5、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.6、B【解析】作出圖象,過(guò)點(diǎn)M作準(zhǔn)線的垂線,垂足為H,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,求解即可【詳解】過(guò)點(diǎn)M作準(zhǔn)線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當(dāng)且僅當(dāng)三點(diǎn)M,A,H共線時(shí)|MA|+|MH|最小,其最小值為.故選:B7、C【解析】設(shè)直線的傾斜角為,則,解方程即可.【詳解】由已知,設(shè)直線的傾斜角為,則,又,所以.故選:C8、A【解析】結(jié)合導(dǎo)數(shù)的幾何意義確定正確選項(xiàng).【詳解】,表示兩點(diǎn)連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A9、B【解析】根據(jù)微積分基本定理即可直接求出答案.【詳解】故選:B.10、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,因?yàn)閽佄锞€上一點(diǎn)M與焦點(diǎn)間的距離是3,所以,得,即點(diǎn)M的縱坐標(biāo)為2,故選:B11、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學(xué)解出試題”的意思是“甲同學(xué)解出試題,或乙同學(xué)解出試題”.故選:D.12、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出命題p,q為真命題時(shí)的a的取值范圍,根據(jù)為真可知p,q都是真命題,即可求得答案.【詳解】命題p:,為真時(shí),有,命題q:,為真時(shí),則有,即,故為真命題時(shí),且,即,故a的取值范圍為,故答案為:14、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對(duì)于任意的都有,則故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計(jì)算能力,屬于中檔題15、【解析】根據(jù)公式求解即可.【詳解】解:當(dāng)時(shí),當(dāng)時(shí),因?yàn)橐策m合此等式,所以.故答案為:16、1【解析】先求導(dǎo),由,代入即得解【詳解】由題意,故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,元.【解析】(1)以獲勝、以獲勝,則分別要連勝三局,前三局勝兩局輸一局,第四局勝利;(2)求出若兩局之后正常結(jié)束比賽時(shí),的勝率,按照勝率分獎(jiǎng)金.【小問1詳解】設(shè)以獲勝、以獲勝的事件分別為,依題意要想獲勝,必須從第一局開始連勝局,;要想獲勝,則前局只能勝局,且第局勝利,故概率;【小問2詳解】設(shè)前兩局雙方戰(zhàn)成后勝,勝的事件分別為.若勝,則可能連勝局,或者局只勝場(chǎng),第局勝,故概率;由于兩人比賽沒有和局,獲勝的概率為,則獲勝的概率為,若勝,則可能連勝局,或者局只勝場(chǎng),第局勝,故概率.故獎(jiǎng)金應(yīng)分給元,分給元.18、(1),,,(2)證明見解析,【解析】(1)根據(jù)題意可得第一周使用A密碼,第二周使用A密碼的概率為0,第三周使用A密碼的概率為,以此類推;(2)根據(jù)題意可知第周從剩下的四種密碼中隨機(jī)選用一種,恰好選到A密碼的概率為,進(jìn)而可得,結(jié)合等比數(shù)列的定義可知為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式即可求出結(jié)果.【小問1詳解】,,,【小問2詳解】第周使用A密碼,則第周必不使用A密碼(概率為),然后第周從剩下的四種密碼中隨機(jī)選用一種,恰好選到A密碼的概率為故,即故為等比數(shù)列且,公比故,故19、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點(diǎn)形式設(shè)出橢圓方程和焦距,根據(jù)橢圓經(jīng)過(guò)和半焦距為3易得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),分別表示出直線方程,進(jìn)而求得點(diǎn)的縱坐標(biāo),點(diǎn)橫坐標(biāo),即可表示出,即可求得答案【小問1詳解】由焦點(diǎn)坐標(biāo)可知,橢圓的焦點(diǎn)在軸上,所以設(shè)橢圓:,焦距為,因?yàn)闄E圓經(jīng)過(guò)點(diǎn),焦點(diǎn)為所以,,解得,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè),由橢圓的方程可知,因?yàn)椋瑒t直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因?yàn)辄c(diǎn)在第一象限,所以,,則,又因?yàn)?,即,所以所以為定值,該定值?.20、(1)(2)證明見解析【解析】(1)根據(jù)已知得點(diǎn)M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設(shè)為,與橢圓方程聯(lián)立,利用韋達(dá)定理及線段長(zhǎng)公式進(jìn)行計(jì)算即可.【小問1詳解】由橢圓定義得,點(diǎn)M的軌跡C為以點(diǎn)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,設(shè)此橢圓的標(biāo)準(zhǔn)方程為,則由題意得,所以C方程為;【小問2詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知直線的斜率一定存在,設(shè)為,則直線的方程可設(shè)為,與橢圓方程聯(lián)立可得,由韋達(dá)定理知,所以,,又因?yàn)?,所以又由題知,所以,所以,所以,得證.21、(1)選①②③,答案均為;(2)66【解析】(1)選①時(shí),利用二項(xiàng)式定理求得的通項(xiàng)公式為,從而得到,求出n的值;選②時(shí),利用二項(xiàng)式系數(shù)和的公式求出,解出n的值;選③時(shí),利用賦值法求解,,從而求出n的值;(2)在第一問求出的的前提下進(jìn)行賦值法求解.【小問1詳解】選①,其中,而的通項(xiàng)公式為,當(dāng)時(shí),,所以,解得:;選②,由于,所以,解得:;選③,令中得:,再令得:,解得:;【小問2詳解】由(1)知:n=7,所以,令得:,令得:,兩式相減得:,所以,故展開式中的奇數(shù)次冪的項(xiàng)的系數(shù)和為66.22、(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)公司托管政府辦公樓管理合同
- 教師本科教學(xué)評(píng)估心得體會(huì)(共8篇)
- 尿道上裂的健康宣教
- 醫(yī)院科研不端行為管理辦法
- 《小馬過(guò)河》課件
- 2024年幼兒教育招生服務(wù)合同6篇
- xx省商業(yè)航天產(chǎn)業(yè)園項(xiàng)目可行性研究報(bào)告
- 提升地方學(xué)科服務(wù)水平的實(shí)施策略與步驟
- 2024年版醫(yī)療設(shè)備研發(fā)與銷售合同
- 2024年虛擬現(xiàn)實(shí)技術(shù)投資入股協(xié)議樣本3篇
- 成骨細(xì)胞骨形成機(jī)制
- 車輛保養(yǎng)維修登記表
- 醫(yī)藥領(lǐng)域知識(shí)產(chǎn)權(quán)
- 杭州市公共服務(wù)設(shè)施配套標(biāo)準(zhǔn)及規(guī)劃導(dǎo)則
- 濕法脫硫用水水質(zhì)要求
- 城管局個(gè)人工作總結(jié)
- 鉑銠合金漏板.
- (完整版)建筑力學(xué)(習(xí)題答案)
- 少年宮籃球活動(dòng)教案
- 國(guó)有建設(shè)企業(yè)《大宗材料及設(shè)備采購(gòu)招標(biāo)管理辦法》
- 民間秘術(shù)絕招大全
評(píng)論
0/150
提交評(píng)論