




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省百校聯考數學高二上期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.2.函數的單調遞增區(qū)間為()A. B.C. D.3.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.4.19世紀法國著名數學家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學,推動了空間幾何學的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.5.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則6.已知等差數列前項和為,若,則的公差為()A.4 B.3C.2 D.17.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=18.已知向量,,且,則的值是()A. B.C. D.9.如圖,在平行六面體中,()A. B.C. D.10.數列的通項公式是()A. B.C. D.11.已知為偶函數,且當時,,其中為的導數,則不等式的解集為()A. B.C. D.12.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列的前n項和滿足:,則________14.在中,若面積,則______15.拋物線的焦點坐標為___________.16.設直線,直線,若,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點到平面的距離.18.(12分)已知等比數列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(),記數列的前n項和為,求.19.(12分)已知數列為各項均為正數的等比數列,若(1)求數列的通項公式;(2)求數列的前n項和20.(12分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時,證明l與C總相交;(2)m取何值時,l被C截得的弦長最短?求此弦長21.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(單位:千人)如下莖葉圖所示:其中一個數字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學習成語知識時間(小時)2.5344.5由表中數據,試求線性回歸方程,并預測年齡為55歲觀眾周均學習成語知識時間.參考公式:,.22.(10分)已知為等差數列,前n項和為,數列是首項為1的等比數列,,,.(1)求和的通項公式;(2)求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.2、B【解析】求出函數的定義域,解不等式可得出函數的單調遞增區(qū)間.【詳解】函數的定義域為,由,可得.因此,函數的單調遞增區(qū)間為.故選:B.3、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C4、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B5、B【解析】A.運用線面平行的性質,結合線線的位置關系,即可判斷;B.運用線面垂直的性質,即可判斷;C.運用線面垂直的性質,結合線線垂直和線面平行的位置即可判斷;D.運用線面平行的性質和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯;B.若m⊥α,,由線面垂直的性質定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯;D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯故選B【點睛】本題考查空間直線與平面的位置關系,考查直線與平面的平行、垂直的判斷與性質,記熟定理是解題的關鍵,注意觀察空間的直線與平面的模型6、A【解析】由已知,結合等差數列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A7、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質8、A【解析】求出向量,的坐標,利用向量數量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.9、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.10、C【解析】根據數列前幾項,歸納猜想出數列的通項公式.【詳解】依題意,數列的前幾項為:;;;……則其通項公式.故選C.【點睛】本小題主要考查歸納推理,考查數列通項公式的猜想,屬于基礎題.11、A【解析】根據已知不等式和要求解的不等式特征,構造函數,將問題轉化為解不等式.通過已知條件研究g(x)的奇偶性和單調性即可解該不等式.【詳解】令,則根據題意可知,,∴g(x)是奇函數,∵,∴當時,,單調遞減,∵g(x)是奇函數,g(0)=0,∴g(x)在R上單調遞減,由不等式得,.故選:A.12、C【解析】求出直線的斜率,結合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設這條件直線的傾斜角為,則,,因此,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用“當時,;當時,"即可得出.【詳解】當時,當時,,不適合上式,數列的通項公式.故答案為:.14、##【解析】結合三角形面積公式與余弦定理得,進而得答案.【詳解】解:由三角形的面積公式得,所以,因為,所以,即,因為,所以故答案為:15、【解析】化成拋物線的標準方程即可.【詳解】由題意知,,則焦點坐標為.故答案為:16、##0.5【解析】根據兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據等邊三角形的性質、線面垂直的性質,結合面面垂直的判定定理進行證明即可;(2)利用余弦定理,結合三棱錐的等積性進行求解即可.【小問1詳解】證明:設,因為是等邊三角形,且,所以是的中點,則.又,所以,所以,即.又平面平面,所以.又,所以平面.因為平面,所以平面平面.【小問2詳解】解:因為,所以.在中,,所以,則又平面,所以.如圖,連接,則,所以.設點到平面的距離為,因為,所以,解得,即點到平面的距離為.18、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設等比數列的公比為q,由已知建立方程組,求得數列的首項和公比,從而求得數列的通項;(Ⅱ)由(Ⅰ)及已知可得和(),運用錯位相減法可求得數列的和【詳解】解:(Ⅰ)設等比數列的公比為q,由,可得,記為①又因為,可得,即記為②,由①②可得或,故的通項公式為或(Ⅱ)由(Ⅰ)及可知,所以(),所以③④③-④得,所以【點睛】方法點睛:數列求和的常用方法:(1)公式法:即直接用等差、等比數列的求和公式求和.(2)錯位相減法:若是等差數列,是等比數列,求.(3)裂項相消法:把數列的通項拆成兩項之差,相消剩下首尾的若干項.常見的裂頂有,,等.(4)分組求和法:把數列的每一項分成若干項,使其轉化為等差或等比數列,再求和.(5)倒序相加法.19、(1)(2)【解析】(1)利用等比數列通項公式列出方程組,可求解,,從而寫出;(2)化簡數列,裂項相消法求和即可.【小問1詳解】設數列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴20、(1)證明見解析;(2)當時,l被C截得的弦長最短,最短弦長為.【解析】(1)求出直線l的定點,進而判斷定點和圓C的位置關系,最后得到答案;(2)當圓心C到直線l的距離最大時,弦長最短,進而求出m,然后根據勾股定理求出弦長.【詳解】(1)直線l的方程可化為y+3=2m(x-4),則l過定點P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以點P在圓內,故直線l與圓C總相交(2)圓的C方程可化為:(x-3)2+(y+6)2=25,如圖所示,當圓心C(3,-6)到直線l的距離最大時,弦AB的長度最短,此時PC⊥l,又,所以直線l的斜率為,則,在直角中,|PC|=,|AC|=5,所以|AB|=.故當時,l被C截得的弦長最短,最短弦長為.21、(1);(2)詳見解析.【解析】(1)先根據兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進行預測.試題解析:(1)設被污損的數字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 印刷企業(yè)市場調研方法考核試卷
- 家庭裝飾畫框批發(fā)考核試卷
- 園藝陶瓷的公共空間裝飾效果考核試卷
- 印刷設備生產過程的智能化技術應用案例考核試卷
- 圖書出租業(yè)務的服務標準化培訓考核試卷
- 影視錄放設備的智能鏡頭切換考核試卷
- 暖氣施工合同范本
- 簽訂重大銷售合同范本
- 口腔消毒培訓課件
- 電商行業(yè)產品描述免責協議承諾書
- 高中數學《立體幾何》教材分析及教學建議
- 八年級英語初中英語閱讀理解閱讀專項練習試卷附答案
- 固定資產清查盤點明細表
- 人教版八年級數學下冊課件【全冊】
- 物聯網管理平臺的設計與實現
- 1例妊娠糖尿病的個案護理
- 光伏發(fā)電職業(yè)病危害預評價方案方案
- 財務報表涉稅分析
- 立式單軸木工銑床安全操作規(guī)程
- 重癥患者識別課件
- 《計算機組成原理》全冊詳解優(yōu)秀課件
評論
0/150
提交評論