![2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/659312cee6ffe7ef90f419fb0e0203ad/659312cee6ffe7ef90f419fb0e0203ad1.gif)
![2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/659312cee6ffe7ef90f419fb0e0203ad/659312cee6ffe7ef90f419fb0e0203ad2.gif)
![2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/659312cee6ffe7ef90f419fb0e0203ad/659312cee6ffe7ef90f419fb0e0203ad3.gif)
![2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/659312cee6ffe7ef90f419fb0e0203ad/659312cee6ffe7ef90f419fb0e0203ad4.gif)
![2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/659312cee6ffe7ef90f419fb0e0203ad/659312cee6ffe7ef90f419fb0e0203ad5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆甘肅省武威市第四中學高二數(shù)學第一學期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.在三棱錐中,點E,F(xiàn)分別是的中點,點G在棱上,且滿足,若,則()A. B.C. D.3.一部影片在4個單位輪流放映,每個單位放映一場,不同的放映次序有()A.種 B.4種C.種 D.種4.已知等比數(shù)列各項均為正數(shù),且,,成等差數(shù)列,則()A. B.C. D.5.是等差數(shù)列,且,,則的值()A. B.C. D.6.如圖,點A的坐標為,點C的坐標為,函數(shù),若在矩形內(nèi)隨機取一點,則此點取自陰影部分的概率等于()A. B.C. D.7.設為空間中的四個不同點,則“中有三點在同一條直線上”是“在同一個平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件8.已知雙曲線的左焦點為F,O為坐標原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.9.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.10.某地為響應總書記關于生態(tài)文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數(shù)據(jù).如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米11.已知等比數(shù)列的前項和為,若公比,則=()A. B.C. D.12.若方程表示雙曲線,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.14.設正方形的邊長是,在該正方形區(qū)域內(nèi)隨機取一個點,則此點到點的距離大于的概率是_____15.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子來研究數(shù).用一點(或一個小石子)代表1,兩點(或兩個小石子)代表2,三點(或三個小石子)代表3,…他們研究了各種平面數(shù)(包括三角形數(shù)、正方形數(shù)、長方形數(shù)、五邊形數(shù)、六邊形數(shù)等等)和立體數(shù)(包括立方數(shù)、棱錐數(shù)等等).如前四個四棱錐數(shù)為第n個四棱錐數(shù)為1+4+9+…+n2=.中國古代也有類似的研究,如圖的形狀出現(xiàn)在南宋數(shù)學家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球,…若一個“三角垛”共有20層,則第6層有____個球,這個“三角垛”共有______個球16.直線的傾斜角的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中,.(1)當時,求曲線在點處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.18.(12分)已知為等差數(shù)列,是各項均為正數(shù)的等比數(shù)列的前n項和,,,,在①;②;③.這三個條件中任選其中一個,補充在上面的橫線上,并完成下面問題的解答(如果選擇多個條件解答,則按選擇的第一個解答計分)(1)求數(shù)列和的通項公式;(2)求數(shù)列的前n項和.19.(12分)已知點是圓:上任意一點,是圓內(nèi)一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經(jīng)過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由20.(12分)在平面直角坐標系xOy中,已知拋物線()的焦點F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點.21.(12分)已知展開式中,第三項的系數(shù)與第四項的系數(shù)相等(1)求n的值;(2)求展開式中有理項的系數(shù)之和(用數(shù)字作答)22.(10分)已知拋物線:,直線過定點.(1)若與僅有一個公共點,求直線的方程;(2)若與交于A,B兩點,直線OA,OB(其中О為坐標原點)的斜率分別為,,試探究在,,,中,運算結果是否有為定值的?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A2、B【解析】利用空間向量的加、減運算即可求解.【詳解】由題意可得故選:B.3、C【解析】根據(jù)題意得到一部影片在4個單位輪流放映,相當于四個單位進行全排列,即可得到答案.【詳解】一部影片在4個單位輪流放映,相當于四個單位進行全排列,所以不同的放映次序有種,故選:C4、A【解析】結合等差數(shù)列的性質(zhì)求得公比,然后由等比數(shù)列的性質(zhì)得結論【詳解】設的公比為,因為,,成等差數(shù)列,所以,即,,或(舍去,因為數(shù)列各項為正)所以故選:A5、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算【詳解】因為是等差數(shù)列,所以,,也成等差數(shù)列,所以故選:B6、A【解析】分別由矩形面積公式與微積分幾何意義計算陰影部分和矩形部分的面積,最后由幾何概型概率計算公式計算即可.【詳解】由已知,矩形的面積為4,陰影部分的面積為,由幾何概型公式可得此點取自陰影部分的概率等于,故選:A7、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過一條直線和直線外一點,有且只有一個平面,可得在同一平面,故充分條件成立;由公理2的推論:過兩條平行直線,有且只有一個平面,可得,當時,同一個平面上,但中無三點共線,故必要條件不成立;故選:A【點睛】本題考查點線面的位置關系和充分必要條件的判斷,重點考查公理2及其推論;屬于中檔題;公理2的三個推論:經(jīng)過一條直線和直線外一點,有且只有一個平面;經(jīng)過兩條平行直線,有且只有一個平面;經(jīng)過兩條相交直線,有且只有一個平面;8、C【解析】由題意可得且,從而求出點的坐標,將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C9、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A10、C【解析】應用正弦定理有,結合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C11、A【解析】根據(jù)題意,由等比數(shù)列的通項公式與前項和公式直接計算即可.【詳解】由已知可得.故選:A.12、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設,,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶14、【解析】先求出正方形的面積,然后求出動點到點的距離所表示的平面區(qū)域的面積,最后根據(jù)幾何概型計算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內(nèi),陰影外面部分的面積為,則在該正方形區(qū)域內(nèi)隨機取一個點,則此點到點的距離大于的概率是.【點睛】本題考查了幾何概型的計算公式,正確求出陰影部分的面積是解題的關鍵.15、①.21②.1540【解析】根據(jù)題中給出的圖形,結合題意找到各層球的數(shù)列與層數(shù)的關系,得到=,由此可求的值,以及前20層的總球數(shù)【詳解】由題意可知,,故==,所==21,所以S20=a1+a2+a3+a4+??+a20=(12+22+32+??+202)+(1+2+3+??+20)=×+×=1540故答案為:21;154016、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關系,即可求出【詳解】可化為:,所以,由于,結合函數(shù)在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關系的應用,以及直線的一般式化斜截式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析.【解析】(1)當時,,求出函數(shù)的導函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當時,在上恒成立,所以函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;②當時,由得,由得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究含參函數(shù)的單調(diào)區(qū)間,屬于基礎題.18、(1)無論選擇哪個條件答案均為;(2).【解析】(1)先根據(jù)題設條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問1詳解】設的公差為,因為,;所以,解得,所以.選①:設的公比為,則;由題意得,因為,所以,解得或(舍);所以.選②:由,當時,,因為,所以;當時,,整理得;即是首項和公比均為2的等比數(shù)列,所以.選③:因為,,所以,解得;所以.【小問2詳解】由(1)得;所以.19、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯(lián)立,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點,則,而,于是得,因此,點的軌跡是以C,A為左右焦點,長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小問2詳解】依題意,設直線的方程為:,,由消去y并整理得:,,則且,設,則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時,是定值,這個定值是.【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數(shù)值得拋物線方程;(2)設直線方程為,,直線方程代入拋物線方程后應用韋達定理得,代入可得值,得定點坐標【小問1詳解】已知雙曲線的一條漸近線方程為,即,拋物線的焦點為,所以,解得(因為),所以拋物線方程為;【小問2詳解】由題意設直線方程為,設由得,,,又,所以,所以,直線不過原點,,所以所以直線過定點21、(1)8;(2).【解析】(1)由題設可得,進而寫出第三、四項的系數(shù),結合已知列方程求n值即可.(2)由(1)有,確定有理項的對應k值,進而求得對應項的系數(shù),即可得結果.小問1詳解】由題意,二項式展開式的通項公式所以第三項系數(shù)為,第四項系數(shù)為,由,解得,即n的值為8【小問2詳解】由(1)知:當,3,6時,對應的是有理項當時,展開式中對應的有理項為;當時,展開式中對應的有理項為;當時,展開式中對應的有理項為;故展開式中有理項的系數(shù)之和為22、(1)或或(2)為定值,而,,均不為定值【解析】(1)過拋物線外一定點的直線恰好與該拋物線只有一個交點,則分兩類分別討論,一是直線與拋物線的對稱軸平行,二是直線與拋物線相切;(2)聯(lián)立直線的方程與拋物線的方程,根據(jù)韋達定理,分別表示出,,,為直線斜率的形式,便可得出結果.【小問1詳解】過點的直線與拋物線僅有一個公共點,則該直線可能與拋物線的對稱軸平行,也可能與拋物線相切,下面分兩種情況討論:當直線可能與拋物線的對稱軸平行時,則有:當直線與拋物線相切時,由于點在軸上方,且在拋物線外,則存在兩條直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年地毯保險合同
- 脫氯劑項目可行性研究報告
- 2024年智能家政服務提供合同
- 2024年新能源發(fā)電項目開發(fā)投資合同
- 新型聚晶金剛石復合片項目可行性研究報告申請建議書
- 城市建設項目承包合同
- 教育培訓機構退費與免責合同
- 2025年城市綠化養(yǎng)護工程合同文本
- 2025年度城市更新改造工程招投標代理合同樣本
- 2025年度土建工程綠色施工技術合同
- 2024年鐵嶺衛(wèi)生職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 2025理論學習計劃2025年理論中心組學習計劃
- 2025年醫(yī)美醫(yī)院公司組織架構和業(yè)務流程
- 山西省2024年中考物理試題(含答案)
- 非標自動化設備技術規(guī)格書和驗收標準(模板)
- GB/T 14258-2003信息技術自動識別與數(shù)據(jù)采集技術條碼符號印制質(zhì)量的檢驗
- 政府資金項目(榮譽)申報獎勵辦法
- 最新如何進行隔代教育專業(yè)知識講座課件
- 當前警察職務犯罪的特征、原因及防范,司法制度論文
- 奧特萊斯專題報告(經(jīng)典)-課件
- 《新制度經(jīng)濟學》配套教學課件
評論
0/150
提交評論