2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁
2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁
2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁
2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁
2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆甘肅省岷縣第二中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.2.在中,已知角A,B,C所對(duì)的邊為a,b,c,,,,則()A. B.C. D.13.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點(diǎn)一定是最值點(diǎn)B.的最值點(diǎn)一定是極值點(diǎn)C.在區(qū)間上可能沒有極值點(diǎn)D.在區(qū)間上可能沒有最值點(diǎn)4.三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或5.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.6.直線的傾斜角為A. B.C. D.7.圓與圓的公切線的條數(shù)為()A.1 B.2C.3 D.48.在二項(xiàng)式的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列,把展開式中所有的項(xiàng)重新排成一列,則有理項(xiàng)互不相鄰的概率()A. B.C. D.9.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.10.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.11.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.12.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.14.若球的大圓的面積為,則該球的表面積為___________.15.如圖,用四種不同的顏色分別給A,B,C,D四個(gè)區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法的種數(shù)為______(用數(shù)字作答)16.已知曲線,則曲線在點(diǎn)處的切線方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題,,命題,.若p、q都為真命題,求實(shí)數(shù)m的取值范圍.18.(12分)已知?jiǎng)訄A過定點(diǎn),且與直線相切,圓心的軌跡為(1)求動(dòng)點(diǎn)的軌跡方程;(2)已知直線交軌跡于兩點(diǎn),,且中點(diǎn)的縱坐標(biāo)為,則的最大值為多少?19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB=60°,PD⊥底面ABCD,點(diǎn)F為棱PD的中點(diǎn),二面角的余弦值為.(1)求PD的長(zhǎng);(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.20.(12分)已知三角形內(nèi)角所對(duì)的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.21.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點(diǎn)E是棱的中點(diǎn),求平面與平面所成銳二面角的余弦值22.(10分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A2、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.3、C【解析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點(diǎn)不一定是最值點(diǎn),的最值點(diǎn)不一定是極值點(diǎn).可能是區(qū)間的端點(diǎn),連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項(xiàng)A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒有極值點(diǎn),所以C正確故選:C.【點(diǎn)睛】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題4、D【解析】根據(jù)三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,解得,然后分,討論求解.【詳解】因?yàn)槿齻€(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,所以,解得,當(dāng)時(shí),方程表示焦點(diǎn)在x軸上的橢圓,所以,所以,當(dāng)時(shí),方程表示焦點(diǎn)在y軸上的雙曲線,所以,所以,故選:D5、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A6、B【解析】分析出直線與軸垂直,據(jù)此可得出該直線的傾斜角.【詳解】由題意可知,直線與軸垂直,該直線的傾斜角為.故選:B.【點(diǎn)睛】本題考查直線的傾斜角,關(guān)鍵是掌握直線傾斜角的定義,屬于基礎(chǔ)題7、D【解析】公切線條數(shù)與圓與圓的位置關(guān)系是相關(guān)的,所以第一步需要判斷圓與圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為3;圓的圓心坐標(biāo)為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.8、A【解析】先根據(jù)前三項(xiàng)的系數(shù)成等差數(shù)列求,再根據(jù)古典概型概率公式求結(jié)果【詳解】因?yàn)榍叭?xiàng)的系數(shù)為,,,當(dāng)時(shí),為有理項(xiàng),從而概率為.故選:A.9、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因?yàn)椋?a2=9b2,所以故選:D.10、A【解析】根據(jù)平面,平面求解.【詳解】因?yàn)槠矫妫矫?,所以,又,,,所?所以,故選:A11、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個(gè)式子均有2n-1項(xiàng),且第一項(xiàng)為n,則最后一項(xiàng)為3n-2右邊均為2n-1的平方故選C點(diǎn)睛:歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想)12、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:14、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.15、48【解析】由已知按區(qū)域分四步,然后給,,,區(qū)域分步選擇顏色,由此即可求解【詳解】解:由已知按區(qū)域分四步:第一步區(qū)域有4種選擇,第二步區(qū)域有3種選擇,第三步區(qū)域有2種選擇,第四步區(qū)域也有2種選擇,則由分步計(jì)數(shù)原理可得共有種,故答案為:4816、【解析】求解導(dǎo)函數(shù),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率,并計(jì)算,利用點(diǎn)斜式寫出切線方程.【詳解】,由題意,切線的斜率為,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】先求出命題為真時(shí),的取值范圍,再取交集可得答案.【詳解】若命題,為真命題,則,解得;若命題,為真命題,則命題,為假命題,即方程無實(shí)數(shù)根,因此,,解得.又p、q都為真命題,所以實(shí)數(shù)m的取值范圍是.【點(diǎn)睛】本題考查全稱命題與特稱命題的真假求參數(shù)值、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.18、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,再根據(jù)二次函數(shù)的性質(zhì)可得最值.【小問1詳解】由題設(shè)點(diǎn)到點(diǎn)的距離等于它到的距離,點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,所求軌跡的方程為;【小問2詳解】由題意易知直線的斜率存在,設(shè)中點(diǎn)為,直線的方程為,聯(lián)立直線與拋物線,得,,且,,又中點(diǎn)為,即,,故恒成立,,,所以,當(dāng)時(shí),取最大值為.【點(diǎn)睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長(zhǎng)問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過焦點(diǎn),則必須用一般弦長(zhǎng)公式19、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),設(shè),,由空間向量法求二面角,從而求得,得長(zhǎng);(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標(biāo)系,則,,,設(shè),,,,設(shè)平面一個(gè)法向量為,則,令,則,,即,平面的一個(gè)法向量是,因?yàn)槎娼怯嘞抑禐?所以,(負(fù)值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個(gè)法向量為,又,,所以直線AF與平面BCF所成角的正弦值為20、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長(zhǎng),進(jìn)一步求得面積【小問1詳解】因?yàn)?,由正弦定理得因?yàn)?,所?因?yàn)榻菫殁g角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=21、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點(diǎn),分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論