版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆安徽省皖中名校聯(lián)盟高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,把橢圓的長軸分成6等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),則()A.20 B.C.36 D.302.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.3.已知某班有學(xué)生48人,為了解該班學(xué)生視力情況,現(xiàn)將所有學(xué)生隨機(jī)編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學(xué)生在樣本中,則樣本中另外一個學(xué)生的編號是()A.26 B.27C.28 D.294.東漢末年的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”,根據(jù)面積關(guān)系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個全等的直角三角形與一個小正方形拼成的一個大正方形.我們通過類比得到圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形.對于圖2.下列結(jié)論正確的是()①這三個全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點(diǎn),則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④5.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.6.已知直線:恒過點(diǎn),過點(diǎn)作直線與圓:相交于A,B兩點(diǎn),則的最小值為()A. B.2C.4 D.7.在等差數(shù)列中,若的值是A.15 B.16C.17 D.188.如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x9.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面10.過兩點(diǎn)、的直線的傾斜角為,則的值為()A.或 B.C. D.11.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.212.已知向量,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.i為虛數(shù)單位,復(fù)數(shù)______14.某射箭運(yùn)動員在一次射箭訓(xùn)練中射靶10次,命中環(huán)數(shù)如下:8,9,8,10,6,7,9,10,8,5,則命中環(huán)數(shù)的平均數(shù)為___________.15.已知直線與垂直,則m的值為______16.已知曲線,則以下結(jié)論正確的是______.①曲線C關(guān)于點(diǎn)對稱;②曲線C關(guān)于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點(diǎn)到原點(diǎn)距離都不超過2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和滿足,數(shù)列滿足(1)求,的通項(xiàng)公式;(2)若數(shù)列滿足,求的前項(xiàng)和18.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個零點(diǎn).19.(12分)已知函數(shù),求函數(shù)在上的最大值與最小值.20.(12分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設(shè)面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點(diǎn)E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.21.(12分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點(diǎn).(1)證明:平面;(2)求此幾何體的體積.22.(10分)已知橢圓,四點(diǎn)中,恰有三點(diǎn)在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點(diǎn),且與橢圓相交于不同的兩點(diǎn).若直線與直線的斜率之和為,證明:直線過一定點(diǎn),并求此定點(diǎn)坐標(biāo)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由橢圓的對稱性可知,,代入計(jì)算可得答案.【詳解】設(shè)橢圓左焦點(diǎn)為,連接由橢圓的對稱性可知,,所以.故選:D.2、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.3、B【解析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學(xué)生來自第三組,設(shè)其編號為,則,進(jìn)而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學(xué)生來自第三組,設(shè)其編號為,則,所以,故選:B【點(diǎn)睛】本題考查系統(tǒng)抽樣的編號,屬于基礎(chǔ)題4、A【解析】對于①,由三角形大邊對大角的性質(zhì)分析,對于②,根據(jù)題意利用正弦定理分析,對于③,利用余弦定理分析,對于④,利用三角形的面積公式分析判斷【詳解】對于①,根據(jù)題意,圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形,故,,所以這三個全等的鈍角三角形不可能是等腰三角形,故①正確;對于②,由題知,在中,,,,所以,所以由正弦定理得解得,因?yàn)?,所以,故②正確;對于③,不妨設(shè),所以在中,由余弦定理得,代入數(shù)據(jù)得,所以,所以,故③錯誤;對于④,若是的中點(diǎn),則,所以,故④正確.故選:A第II卷(非選擇題5、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因?yàn)楹瘮?shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B6、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點(diǎn),圓心,半徑,已知點(diǎn)P在圓內(nèi),過點(diǎn)作直線與圓相交于A,兩點(diǎn),記圓心到直線的距離為d,則,所以當(dāng)d取得最大值時,有最小值,結(jié)合圖形易知,當(dāng)直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.7、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題8、C【解析】過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因?yàn)閨AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.9、D【解析】根據(jù)對立事件的定義即可得出結(jié)果.【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D10、D【解析】利用斜率公式可得出關(guān)于實(shí)數(shù)的等式與不等式,由此可解得實(shí)數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.11、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A12、B【解析】根據(jù)向量加減法運(yùn)算的坐標(biāo)表示即可得到結(jié)果【詳解】故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡求解即可.【詳解】故答案為:.14、【解析】直接利用求平均數(shù)的公式即可求解.【詳解】由已知得數(shù)據(jù)的平均數(shù)為,故答案為:.15、0或-9##-9或0【解析】根據(jù)給定條件利用兩直線互相垂直的性質(zhì)列式計(jì)算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-916、②④【解析】將x換成,將y換成,若方程不變則關(guān)于原點(diǎn)對稱;將x換成,曲線的方程不變則關(guān)于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點(diǎn)到原點(diǎn)距離是否不超過2,根據(jù)曲線C關(guān)于y軸對稱,即可判斷出曲線C上的點(diǎn)到原點(diǎn)距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關(guān)于點(diǎn)不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關(guān)于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點(diǎn)為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當(dāng)時,,可得,當(dāng)且僅當(dāng)時取等號,即,則,即曲線C上y軸右側(cè)的點(diǎn)到原點(diǎn)的距離都不超過2,此曲線關(guān)于y軸對稱,即曲線C上y軸左側(cè)的點(diǎn)到原點(diǎn)的距離也不超過2,故④正確;故答案為:②④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由求得的遞推關(guān)系,結(jié)合可得其為等比數(shù)列,從而得通項(xiàng)公式,代入計(jì)算得;(2)求出,由錯位相減法求和【詳解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式及錯位相減法求和.?dāng)?shù)列求和的常用方法:公式法、錯位相減法、裂項(xiàng)相消法、分組(并項(xiàng))求和法,倒序相加法18、(1)(2)證明見解析【解析】(1)利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導(dǎo)后發(fā)現(xiàn)導(dǎo)數(shù)中無參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點(diǎn)存在定理結(jié)合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個零點(diǎn).【小問1詳解】若,則,其定義域?yàn)?,∴,由,得,∴?dāng)時,;當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠,∵,∴當(dāng)時,,故在上無零點(diǎn);當(dāng)時,,∵且,∴在上有且只有一個零點(diǎn).綜上,有且只有一個零點(diǎn).19、最大值為,最小值為【解析】利用導(dǎo)數(shù)可求得的單調(diào)性,進(jìn)而可得極值,比較極值和端點(diǎn)值的大小即可求解.【詳解】由可得:,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,,又因?yàn)椋?,所以,綜上所述:函數(shù)在上的最大值為,最小值為.20、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結(jié)論,(2)由已知條件可證得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸建立空間直角坐標(biāo)系,利用空間向量求解【小問1詳解】證明:因?yàn)?所以,所以∥,因?yàn)槠矫?,平面,所以∥平面,因?yàn)槠矫?,且平面面,所以∥,因?yàn)槠矫?,平面,所以∥平面,【小?詳解】設(shè)的中點(diǎn)為,因?yàn)椤鱌DC是等邊三角形,所以,因?yàn)槠矫鍼DC⊥平面ABCD,且平面面,所以平面,因?yàn)槠矫?,所以,所以以為原點(diǎn),所在的直線分別為軸建立空間直角坐標(biāo)系,如圖所示,則,所以,假設(shè)存在這樣的點(diǎn),由已知得,則,所以,因?yàn)槠矫?,所以平面的一個法向量為,設(shè)平面的一個法向量為,則,令,則,則所以,整理得,解得(舍去),或,所以21、(1)證明見解析(2)【解析】(1)取的中點(diǎn),連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點(diǎn),連接,,因?yàn)椋謩e是,的中點(diǎn).所以且又因?yàn)椋?,所以且,故四邊形為平行四邊形,所?因?yàn)檎切?,是的中點(diǎn),所以,又因?yàn)槠矫?,所以,又,所以平面又,所以平?【小問2詳解】如圖,過作截面平面,分別交,于,,連接,作于,因?yàn)槠矫嫫矫?,所以,結(jié)合直三棱柱的性質(zhì),則平面因?yàn)?,,,所?所以所求幾何體體積為22、(1)(2)證明見解析,定點(diǎn)【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024專業(yè)財務(wù)代理服務(wù)協(xié)議模板
- 2003課件教學(xué)課件
- 口才小段課件教學(xué)課件
- 北京版五年級(下)勞動技術(shù)教(學(xué))案
- 高一年級排球選修全套教案
- 代工合同協(xié)議書
- 會議接待出租車協(xié)議書
- 個人建房工程合同
- 代理商加盟合同
- 企業(yè)入駐專利使用協(xié)議
- 教學(xué)課件-律師實(shí)務(wù)
- (完整版)病例演講比賽PPT模板
- 社科類課題申報工作輔導(dǎo)報告課件
- 2023-2024學(xué)年廣東省廣州市小學(xué)語文六年級期末高分試卷詳細(xì)參考答案解析
- 比尾巴(全國一等獎)
- 如何做好船舶成本管理
- 沙利文-內(nèi)窺鏡行業(yè)現(xiàn)狀與發(fā)展趨勢藍(lán)皮書
- 比亞迪e6說明書
- 渠道管理PPT(第3版)完整全套教學(xué)課件
- 《新時代勞動教育》-02新時代勞動價值觀課件
- 2023年口腔醫(yī)學(xué)期末復(fù)習(xí)-牙周病學(xué)(口腔醫(yī)學(xué))考試歷年真題薈萃帶答案
評論
0/150
提交評論