2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆甘肅省會寧縣高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.大數(shù)學(xué)家阿基米德的墓碑上刻有他最引以為豪的數(shù)學(xué)發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.2.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.3.在數(shù)列中,,則此數(shù)列最大項的值是()A.102 B.C. D.1084.已知圓,圓相交于P,Q兩點,其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.5.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.16.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.7.的展開式中的系數(shù)為,則()A. B.C. D.8.已知函數(shù),若對任意的,,且,總有,則的取值范圍是()A B.C. D.9.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當(dāng)取得最小值時,點Q的坐標為()A. B.C. D.10.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則11.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.812.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側(cè)面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為___________.14.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.15.直線與橢圓交于,兩點,線段的中點為,設(shè)直線的斜率為,直線(其中為坐標原點)的斜率為,則______.16.已知函數(shù),則函數(shù)在上的最大值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,若關(guān)于x的不等式恒成立,試求a的取值范圍18.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和.19.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.20.(12分)已知橢圓經(jīng)過點,(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點,且的面積為,求直線的方程21.(12分)某企業(yè)計劃新購買臺設(shè)備,并將購買的設(shè)備分配給名年齡不同(視為技術(shù)水平不同)的技工加工一批模具,因技術(shù)水平不同而加工出的產(chǎn)品數(shù)量不同,故產(chǎn)生的經(jīng)濟效益也不同.若用變量表示不同技工的年齡,變量為相應(yīng)的效益值(元),根據(jù)以往統(tǒng)計經(jīng)驗,他們的工作效益滿足最小二乘法,且關(guān)于的線性回歸方程為(1)試預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟效益;(2)試根據(jù)的值判斷使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強弱(,則認為與線性相關(guān)性很強;,則認為與線性相關(guān)性不強);(3)若這批設(shè)備有兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是,.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本不增加;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加萬元.求這批設(shè)備增加的生產(chǎn)成本的期望參考數(shù)據(jù):,參考公式:回歸直線的斜率和截距的最小二乘估計分別為,,.22.(10分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C2、C【解析】根據(jù)題意求出P點坐標,代入橢圓方程中,可整理得到關(guān)于a,c的等式,進一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.3、D【解析】將將看作一個二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個二次函數(shù),其對稱軸為,開口向下,因為,所以當(dāng)時,取得最大值,故選:D4、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A5、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關(guān)系法適用于動直線問題6、D【解析】焦點三角形問題,可結(jié)合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構(gòu)成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關(guān)的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系7、B【解析】根據(jù)二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B8、B【解析】根據(jù)函數(shù)單調(diào)性定義、二次函數(shù)性質(zhì)及對稱軸方程,即可求解參數(shù)取值范圍.【詳解】依題意可得,在上為減函數(shù),則,即的取值范圍是故選:B【點睛】本題考查函數(shù)單調(diào)性定義,二次函數(shù)性質(zhì),屬于基礎(chǔ)題.9、C【解析】設(shè),用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時,取得最小值,從而求得點的坐標.【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時,取得最小值,此時==,即點Q的坐標為.故選:C10、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時,,但,故A錯;B.當(dāng)時,,故B錯;C.當(dāng)時,,但,故C錯;D.若,則,D正確故選:D11、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設(shè)直線,則,,而,當(dāng)且僅當(dāng)?shù)忍柍闪?,故的最小值?,故選:D.12、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側(cè)棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側(cè)面都是平行四邊形,則B正確;對于C:正三棱錐的側(cè)棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點M為的重心,E為AC中點,當(dāng)點在平面上的射影為時,三棱錐的體積最大,此時,,點M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點睛】思路點睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運算能力,屬于中檔題.14、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.15、##-0.0625【解析】使用點差法即可求解﹒【詳解】設(shè),,則①-②得:,即,即.故答案為:.16、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的減區(qū)間為,增區(qū)間為(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用分離參數(shù)法,結(jié)合構(gòu)造函數(shù)法以及導(dǎo)數(shù)求得的取值范圍.【小問1詳解】當(dāng)時,,,所以在區(qū)間遞減;在區(qū)間遞增.所以的減區(qū)間為,增區(qū)間為.【小問2詳解】,恒成立.構(gòu)造函數(shù),,,構(gòu)造函數(shù),,所以在上遞增,,所以在上成立,所以,所以,即的取值范圍是.18、(1)(2)【解析】(1)根據(jù)已知求出首項和公差即可求出;(2)利用裂項相消法求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,因為,所以,化簡得,解得,所以【小問2詳解】由(1)可知,所以,所以.19、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設(shè)存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點使得20、(1)(2)【解析】(1)將點M、N的坐標代入橢圓方程計算,求出a、b的值即可;(2)設(shè)l的方程為:,,根據(jù)直線與圓的位置關(guān)系可得,直線方程聯(lián)立橢圓方程并消去y,利用韋達定理表示出,根據(jù)弦長公式求出,進而列出關(guān)于k的方程,解之即可.【小問1詳解】橢圓經(jīng)過點,則,解得,【小問2詳解】設(shè)l的方程為:與圓相切設(shè)點,∴(則Δ>0,,,,,,,,,故,21、(1)元;(2)使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強;(3)0.13萬元.【解析】(1)直接把代入線性回歸方程即得解;(2)先求出,再代公式求出相關(guān)系數(shù)比較即得解;(3)設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5,求出對應(yīng)的概率即得解.小問1詳解】解:當(dāng)時,.所以預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟效益為元.【小問2詳解】解:由題得,所以,所以.因為,所以與線性相關(guān)性很強.所以使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強.【小問3詳解】解:設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論