2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省泉州永春華僑中學高二數(shù)學第一學期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線上一點,點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.32.已知一質點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知點是拋物線上的一點,F是拋物線的焦點,則點M到F的距離等于()A.6 B.5C.4 D.25.下列拋物線中,以點為焦點的是()A. B.C. D.6.若雙曲線離心率為,過點,則該雙曲線的方程為()A. B.C. D.7.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.8.已知對稱軸為坐標軸的雙曲線的兩漸近線方程為,若雙曲線上有一點,使,則雙曲線的焦點()A.在軸上 B.在軸上C.當時在軸上 D.當時在軸上9.雙曲線的焦點到漸近線的距離為()A. B.C. D.10.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標為()A. B.C.6 D.712.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.14.已知數(shù)列滿足,,則使得成立的n的最小值為__________.15.已知橢圓:的右焦點為,且經(jīng)過點(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點,與直線相交于點.在軸是否存在定點,使?若存在,求出點的坐標;若不存在,說明理由16.設雙曲線C:的焦點為,點為上一點,,則為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.18.(12分)已知數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求證:.19.(12分)已知函數(shù)(1)當時,求的單調區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍20.(12分)芯片作為在集成電路上的載體,廣泛應用在手機、軍工、航天等多個領域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調研與統(tǒng)計,某公司七年時間里在芯片技術上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖數(shù)據(jù),求y關于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當研發(fā)技術投入不少于16億元時,國家給予公司補貼5億元,預測當芯片的研發(fā)投入為17億元時公司的實際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),21.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點.(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.22.(10分)(1)已知:函數(shù)有零點;:所有的非負整數(shù)都是自然數(shù).若為假,求實數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出點的坐標,然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因為為拋物線上一點,所以,得,所以,拋物線的焦點為,因為點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,所以,化簡得,因為,所以,故選:B2、C【解析】求出即得解.【詳解】解:由題意得,故質點在第1秒末的瞬時速度為.故選:C3、C【解析】利用函數(shù)在上單調遞減即可求解.【詳解】解:因為函數(shù)在上單調遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.4、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.5、A【解析】由題意設出拋物線的方程,再結合焦點坐標即可求出拋物線的方程.【詳解】∵拋物線為,∴可設拋物線方程為,∴即,∴拋物線方程為,故選:A.6、B【解析】分析可得,再將點代入雙曲線的方程,求出的值,即可得出雙曲線的標準方程.【詳解】,則,,則雙曲線的方程為,將點的坐標代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B7、D【解析】構造,結合已知有在R上遞增且,原不等式等價于,利用單調性求解集.【詳解】令,由題設知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D8、B【解析】設出雙曲線的一般方程,利用題設不等式,令二者平方,整理求得的,進而可判斷出焦點的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點在軸上.故選B.【點睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標準方程的理解與運用,求解時要注意焦點落在軸或軸的特點,考查學生分析問題和解決問題的能力9、D【解析】根據(jù)題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質,關鍵是求出雙曲線的漸近線與焦點坐標.10、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設,設,求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設,由在長方體中,,,設,可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.11、D【解析】設出P的縱坐標,利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準線方程為,P點到拋物線的焦點的距離等于到準線的距離,設點縱坐標為,則,解得:.故選:D12、C【解析】利用拋物線的定義轉化為到準線的距離,即可求得.【詳解】拋物線的焦點坐標為,準線方程為,,∴,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉化為P點到另一個定點的距離,然后結合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質,同時考查了阿氏圓定義的應用.還考查了學生利用轉化思想、方程思想等思想方法解題的能力.難度較大14、11【解析】由題設可得,結合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.15、(1),;(2)存在定點,為【解析】(1)利用,,求解方程(2)設直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點坐標及,假設存在點,利用化簡求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點,為使,證明:設直線方程為代入得,化簡得由,得,,設,則,,則,設,則,則假設存在點解得所以在軸存在定點使【點睛】本題考查直線與橢圓的位置關系,考查切線的應用,利用判別式等于0得坐標是解決問題的關鍵,考查計算能力,是中檔題16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因為點為上一點,所以,因為,所以,解得或(舍去),故答案為:14三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調遞增區(qū)間為;單調減區(qū)間為和;(2);.【解析】(1)求出導函數(shù),令,求出單調遞增區(qū)間;令,求出單調遞減區(qū)間.(2)求出函數(shù)的單調區(qū)間,利用函數(shù)的單調性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調遞增區(qū)間為,單調減區(qū)間為和;2由在單調遞減,在單調遞增,所以,而,,故最大值是.18、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項,為公比的等比數(shù)列,從而得到數(shù)列的通項公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項公式得到,即可得到,再令,利用錯位相減法求出,即可得證;【小問1詳解】解:因為,且,當時,則,所以,當時,,則,即,所以是以為首項,為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因為,所以,所以,令,則,所以,所以,即,所以,即;19、(1)在上單調遞增,在上單調遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導數(shù)求出單調區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導數(shù)求出的最大值即可求解.【小問1詳解】當時,,定義域為,當時,,單調遞增;當時,,單調遞減∴當時,取得極大值﹣1所以在上單調遞增,在上單調遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導得,所以當時,,單調遞增,當時,,單調遞減,∴當時,取得最大值,∴k的取值范圍為20、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計算即可(2)代入回歸直線計算即可小問1詳解】由折線圖中數(shù)據(jù)知,,,因為,所以所以y關于x的線性回歸方程為【小問2詳解】當時,億元,此時公司的實際收益的預測值為億元21、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標系,求出各點的坐標;(1)用向量的坐標運算證明向量共面,進而證明點共面;(2)利用向量的數(shù)量積的坐標運算證明,即可;(3)確定平面EFGHKL的一個法向量,利用空間角度的向量計算公式求得答案.【小問1詳解】證明:以D為原點,分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標系,不妨設正方體的棱長為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問3詳解】由(2)知,是平面EFGHKL的一個法向量,設與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論