版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣西貴港市港南中學(xué)三文科班高二上數(shù)學(xué)期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的公差為,前項(xiàng)和為,等比數(shù)列的公比為,前項(xiàng)和為.若,則()A. B.C. D.2.已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)n的值是()A. B.C. D.3.金剛石的成分為純碳,是自然界中天然存在的最堅(jiān)硬物質(zhì),它的結(jié)構(gòu)是由8個(gè)等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.4.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.5.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.6.?dāng)?shù)列的一個(gè)通項(xiàng)公式為()A. B.C. D.7.若直線與互相平行,且過點(diǎn),則直線的方程為()A. B.C. D.8.平行六面體中,若,則()A. B.1C. D.9.過點(diǎn),且斜率為2的直線方程是A. B.C. D.10.已知橢圓的焦點(diǎn)分別為,,橢圓上一點(diǎn)P與焦點(diǎn)的距離等于6,則的面積為()A.24 B.36C.48 D.6011.已知數(shù)列為等比數(shù)列,若,,則的值為()A.8 B.C.16 D.±1612.已知p:,那么p的一個(gè)充分不必要條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為______.14.函數(shù)在區(qū)間上的最小值為__________.15.已知是等差數(shù)列,,,設(shè),數(shù)列前n項(xiàng)的和為,則______16.若展開式的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過的直線交與兩點(diǎn).(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.18.(12分)經(jīng)觀測,某種昆蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)將收集到的溫度和產(chǎn)卵數(shù)的10組觀測數(shù)據(jù)作了初步處理,得到如下圖的散點(diǎn)圖及一些統(tǒng)計(jì)量表.275731.121.71502368.3630表中,(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù).試求y關(guān)于x回歸方程.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.19.(12分)已知為坐標(biāo)原點(diǎn),圓的圓心在軸上,點(diǎn)、均在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于兩個(gè)不同的點(diǎn)、,點(diǎn)在圓上,求面積的最大值.20.(12分)已知是函數(shù)的一個(gè)極值點(diǎn).(1)求實(shí)數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),試證明:22.(10分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點(diǎn)在線段含端點(diǎn)上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項(xiàng).【詳解】若,則,而,此時(shí),這與題設(shè)不合,故,故,故,而,故,此時(shí)不確定,故選:D.2、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點(diǎn)為,,因?yàn)殡p曲線的一條漸近線與直線平行,所以,解得.故選:C3、C【解析】由幾何關(guān)系先求出一個(gè)正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C4、A【解析】動(dòng)點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩η髮?dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A5、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點(diǎn)睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡單性質(zhì).屬基礎(chǔ)題6、A【解析】根據(jù)規(guī)律,總結(jié)通項(xiàng)公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項(xiàng)為,所以該數(shù)列一個(gè)通項(xiàng)公式為故選:A7、D【解析】由題意設(shè)直線的方程為,然后將點(diǎn)代入直線中,可求出的值,從而可得直線的方程【詳解】因?yàn)橹本€與互相平行,所以設(shè)直線的方程為,因?yàn)橹本€過點(diǎn),所以,得,所以直線的方程為,故選:D8、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.9、A【解析】由直線點(diǎn)斜式計(jì)算出直線方程.【詳解】因?yàn)橹本€過點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡單.10、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.11、A【解析】利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)的公比為,則,,兩式相除可得,所以,所以,故選:A.12、C【解析】按照充分不必要條件依次判斷4個(gè)選項(xiàng)即可.【詳解】A選項(xiàng):,錯(cuò)誤;B選項(xiàng):,錯(cuò)誤;C選項(xiàng):,,正確;D選項(xiàng):,錯(cuò)誤.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,重點(diǎn)考查計(jì)算能力,屬于基礎(chǔ)題型.14、【解析】先對函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時(shí)取等號,即取等號,因?yàn)?,所以函?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得最小值0,故答案為:015、-3033【解析】先求得,進(jìn)而得到,再利用并項(xiàng)法求解.【詳解】解:因?yàn)槭堑炔顢?shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303316、【解析】首先利用展開式的二項(xiàng)式系數(shù)和是求出,然后即可求出二項(xiàng)式的常數(shù)項(xiàng).【詳解】由題知展開式的二項(xiàng)式系數(shù)之和是,故有,可得,知當(dāng)時(shí)有.故展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查了利用二項(xiàng)式的系數(shù)和求參數(shù),求二項(xiàng)式的常數(shù)項(xiàng),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達(dá)定理可得;(2)借助(1)中結(jié)論可得各點(diǎn)縱坐標(biāo)之積,進(jìn)而得到F、T、Q三點(diǎn)橫坐標(biāo)關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因?yàn)锳P與BQ均過T(t,0)點(diǎn),可知,又AB過F點(diǎn),所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.18、(1)(2)【解析】(1)根據(jù)散點(diǎn)圖看出樣本點(diǎn)分布在一條指數(shù)函數(shù)的周圍,即可判斷;(2)令,利用最小二乘法即可求出y關(guān)于x的線性回歸方程.【小問1詳解】根據(jù)散點(diǎn)圖判斷,看出樣本點(diǎn)分布在一條指數(shù)函數(shù)的周圍,所以適宜作為y與x之間的回歸方程模型;【小問2詳解】令,則,;,∴;∴y關(guān)于x的回歸方程為.19、(1);(2).【解析】(1)求出圓心坐標(biāo),可求得圓的半徑,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)求得點(diǎn)到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達(dá)式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問1詳解】解:由題知,線段的中點(diǎn)為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點(diǎn),所以圓的半徑,所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:由題知:圓心到直線的距離,因?yàn)椋詧A心到直線的距離,所以到直線的距離,設(shè)點(diǎn)、,聯(lián)立可得,,,則,所以,,所以,所以,所以當(dāng)且僅當(dāng),即時(shí)等號成立,所以當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值20、(1)3(2),【解析】(1)先求出函數(shù)的導(dǎo)數(shù),根據(jù)極值點(diǎn)可得導(dǎo)數(shù)的零點(diǎn),從而可求實(shí)數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個(gè)極值點(diǎn),.,,此時(shí),令,解劇或,令,解得,故為的極值點(diǎn),故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又21、(1)答案見解析(2)證明見解析【解析】(1)依據(jù)導(dǎo)函數(shù)判定函數(shù)的單調(diào)性即可;(2)等價(jià)轉(zhuǎn)化和構(gòu)造新函數(shù)在不等式證明中可以起到關(guān)鍵性作用.【小問1詳解】的定義域?yàn)?,?dāng)時(shí),令得,當(dāng)時(shí),;當(dāng)時(shí),所以在和上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,存在兩個(gè)極值點(diǎn),則有二正根,由,得由于的兩個(gè)極值點(diǎn)滿足,所以,不妨設(shè),則由于,所以等價(jià)于設(shè)函數(shù),在單調(diào)遞減,又,從而所以,故.【點(diǎn)睛】導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,常化為不等式恒成立問題.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理22、(1)證明見解析(2)點(diǎn)與點(diǎn)重合時(shí),二面角的余弦值為【解析】(1)先利用平面幾何知識和余弦定理得到及各邊長度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標(biāo)系,設(shè),寫出相關(guān)點(diǎn)的坐標(biāo),得到相關(guān)向量的坐標(biāo),利用平面的法向量夾角求出二面角的余弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物業(yè)管理公司員工安全責(zé)任與應(yīng)急疏散通道維護(hù)合同3篇
- 2025年度鋁材產(chǎn)品質(zhì)量檢測與認(rèn)證服務(wù)合同4篇
- 二零二五年度旅游車輛租賃與景區(qū)景點(diǎn)講解合同4篇
- 2025年度洗滌房租賃與洗滌技術(shù)培訓(xùn)合同3篇
- 二零二五年度城市綠化工程臨時(shí)工派遣服務(wù)合同模板4篇
- 2025年昌月離婚協(xié)議書全新版本2篇
- 2025年度鋁合金模板工程安裝與綠色認(rèn)證合同4篇
- 2025年版校企合作人才引進(jìn)與培養(yǎng)合同模板2篇
- 二零二五版出租車廣告位租賃與收益分成合同2篇
- 二零二五年度數(shù)據(jù)中心建設(shè)與維護(hù)合同4篇
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 有機(jī)化學(xué)機(jī)理題(福山)
- 醫(yī)學(xué)會(huì)自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動(dòng)物遺傳育種學(xué)》動(dòng)物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報(bào)告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
- 7.6用銳角三角函數(shù)解決問題 (2)
評論
0/150
提交評論