2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)數(shù)學(xué)高二上期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在處的切線的斜率為()A.-1 B.1C.2 D.32.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或3.下列四個命題中為真命題的是()A.設(shè)p:1<x<2,q:2x>1,則p是q的必要不充分條件B.命題“”的否定是“”C.函數(shù)的最小值是4D.與的圖象關(guān)于直線y=x對稱4.若將雙曲線繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.5.已知,,,則下列判斷正確的是()A. B.C. D.6.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件7.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.18.據(jù)記載,歐拉公式是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學(xué)中的天橋”特別是當(dāng)時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學(xué)中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學(xué)家評價它是“最完美的數(shù)學(xué)公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.9.直線被圓所截得的弦長為()A. B.C. D.10.函數(shù)在處的切線方程為()A. B.C. D.11.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.12.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.二、填空題:本題共4小題,每小題5分,共20分。13.若過點作圓的切線,則切線方程為___________.14.圓錐的高為1,底面半徑為,則過圓錐頂點的截面面積的最大值為____________15.已知拋物線的焦點F在直線上,過點F的直線l與拋物線C相交于A,B兩點,O為坐標(biāo)原點,△的面積是△面積的4倍,則直線l的方程為____________16.已知,在直線上存在點P,使,則m的最大值是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直棱柱中,已知,點分別的中點.(1)求異面直線與所成的角的大小;(2)求點到平面的距離;(3)在棱上是否存在一點,使得直線與平面所成的角的大小是?若存在,請指出點的位置,若不存在,請說明理由.18.(12分)2021年7月29日,中國游泳隊獲得了女子米自由泳接力決賽冠軍并打破世界紀(jì)錄.受奧運精神的鼓舞,某游泳俱樂部組織100名游泳愛好者進行自由泳1500米測試,并記錄他們的時間(單位:分鐘),將所得數(shù)據(jù)分成5組:,,,,,整理得到如圖所示的頻率分布直方圖.(1)求出直方圖中m的值;(2)利用樣本估計總體的思想,估計這100位游泳愛好者1500米自由泳測試時間的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值作代表).19.(12分)某班名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.20.(12分)在平面直角坐標(biāo)系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設(shè)不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關(guān)系,并證明你的結(jié)論21.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求證:AB⊥PC;(2)點M在線段PD上,二面角M﹣AC﹣D的余弦值為,求三棱錐M﹣ACP體積22.(10分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.2、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點在x軸上時,漸近線為,故離心率為;當(dāng)雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.3、D【解析】根據(jù)推出關(guān)系和集合的包含關(guān)系判斷A,根據(jù)全稱命題的否定形式可判斷B,根據(jù)對鉤函數(shù)性質(zhì)即三角函數(shù)的性質(zhì)可判斷C,根據(jù)反函數(shù)的圖像性質(zhì)可判斷D.【詳解】解:對于選項A:是的真子集,所以命題p是q的充分不必要條件,故A錯誤;對于選項B:命題“”的否定是“”,故B錯誤;對于選項C:函數(shù),當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時取最小值,故C錯誤;對于選項D:與互為反函數(shù),故圖象關(guān)于直線y=x對稱,故D正確.4、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負(fù)即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標(biāo)軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C5、A【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性,以及根式的運算,確定的大小關(guān)系,則問題得解.【詳解】因為,即;又,故.故選:A.6、A【解析】根據(jù)事件的關(guān)系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關(guān)系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎(chǔ)題.7、C【解析】根據(jù)雙曲線的漸近線方程的特點,結(jié)合虛軸長的定義進行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C8、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.9、A【解析】求得圓心坐標(biāo)和半徑,結(jié)合點到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.10、C【解析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒11、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結(jié)果.【詳解】因為雙曲線的離心率,所以,設(shè)為拋物線焦點,則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.12、A【解析】.本題選擇A選項.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】根據(jù)圓心到切線的距離等于圓的半徑即可求解.【詳解】由題意可知,,故在圓外,則過點做圓的切線有兩條,且切線斜率必存在,設(shè)切線為,即,則圓心到直線的距離,解得或,故切線方程為或故答案為:或14、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設(shè)軸截面頂角為,因為圓錐的高為1,底面半徑為,所以,,所以,,設(shè)圓錐母線長為,則,截面的面積為,因為,所以時,故答案為:215、【解析】設(shè)A,B分別為,由焦點在已知直線上求F坐標(biāo)及拋物線方程,再根據(jù)題設(shè)三角形的面積關(guān)系可得,并設(shè)直線l為,聯(lián)立拋物線應(yīng)用韋達定理求參數(shù)m,即可知直線l的方程.【詳解】設(shè)點A,B的坐標(biāo)分別為,直線,令可得,故焦點F的坐標(biāo)為,所以,由,,而△的面積是△面積的4倍,所以,即,設(shè)直線l為,聯(lián)立方程,消去x后整理為,所以,代入,有,可得,則直線l的方程為故答案為:.【點睛】關(guān)鍵點點睛:根據(jù)拋物線焦點位置及其所在直線求拋物線方程,由面積關(guān)系得到交點縱坐標(biāo)的數(shù)量關(guān)系,注意交點在x軸兩側(cè),再設(shè)直線聯(lián)立拋物線求參數(shù)即可.16、11【解析】設(shè)P點坐標(biāo),根據(jù)條件知,由向量的坐標(biāo)運算可得P點位于圓上,再根據(jù)P存在于直線上,可知直線和圓有交點,因此列出相應(yīng)的不等式,求得m范圍,可得m的最大值.【詳解】設(shè)P(x,y),則,由題意可知,所以,即,即滿足條件的點P在圓上,又根據(jù)題意P點存在于直線上,則直線與圓有交點,故有圓心(1,0)到直線的距離小于等于圓的半徑,即,解得,則m的最大值為11,故答案為:11.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)不存在,理由見解析【解析】(1)由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標(biāo)系.,利用向量法求解異面直線成角即可.(2)先求出平面DEF的一個法向量,然后利用向量法求解點面距離.(3)設(shè)(),由可得關(guān)于的方程,從而得出答案.【小問1詳解】由題意,以點A為原點,方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標(biāo)系.則,,,,故,,從而,所以異面直線AE與DF所成角的大小為.小問2詳解】,設(shè)平面DEF的法向量為,則,即,取,得到平面DEF的一個法向量為.點A到平面DEF的距離為.【小問3詳解】假設(shè)存在滿足條件的點M,設(shè)(),則,從而.即,即,此方程無實數(shù)解,故不存在滿足條件的點M.18、(1)(2),【解析】(1)利用頻率之和也即各矩形的面積和為1即可求解.(2)利用平均數(shù)和中位數(shù)的計算方法求解即可.【小問1詳解】由,可得.【小問2詳解】平均數(shù)為:,設(shè)中位數(shù)為,則,解得.19、(1);(2).【解析】(1)將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,再將所得結(jié)果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學(xué)成績在、內(nèi)的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.20、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設(shè)直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長公式可求,可轉(zhuǎn)化為,結(jié)合韋達定理可化簡,進而得證.【小問1詳解】設(shè),,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設(shè)直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標(biāo)為,直線方程為,由方程組,得,,所以又所以.21、(1)證明見解析(2)【解析】(1)將問題轉(zhuǎn)化為證明AB⊥平面PAC,然后結(jié)合已知可證;(2)建立空間直角坐標(biāo)系,用向量法結(jié)合已知先確定點M位置,然后轉(zhuǎn)化法求體積可得.【小問1詳解】由題意得四邊形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小問2詳解】過點A作AE⊥BC于E,易知E為BC中點,以A為原點,AE,AD,AP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論