2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省宣城市第十三中學(xué)數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.82.曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.153.設(shè)雙曲線:的左、右焦點(diǎn)分別為、,P為C上一點(diǎn),且,,則雙曲線的漸近線方程為()A. B.C. D.4.若,則x的值為()A.4 B.6C.4或6 D.85.如圖,在四面體中,,,,分別為,,,的中點(diǎn),則化簡的結(jié)果為()A. B.C. D.6.函數(shù)的圖象大致是()A. B.C. D.7.某種心臟手術(shù)成功率為0.9,現(xiàn)采用隨機(jī)模擬方法估計(jì)“3例心臟手術(shù)全部成功”的概率.先利用計(jì)算器或計(jì)算機(jī)產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),由于成功率是0.9,故我們用0表示手術(shù)不成功,1,2,3,4,5,6,7,8,9表示手術(shù)成功,再以每3個(gè)隨機(jī)數(shù)為一組,作為3例手術(shù)的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生如下10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,由此估計(jì)“3例心臟手術(shù)全部成功”的概率為()A.0.9 B.0.8C.0.7 D.0.68.設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則()A.60 B.80C.90 D.1009.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設(shè)實(shí)數(shù),滿足,則的最小值為()A.5 B.6C.7 D.811.如圖,正四棱柱是由四個(gè)棱長為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個(gè)點(diǎn),則集合的元素個(gè)數(shù)()A.1 B.2C.4 D.812.已知,是橢圓的兩焦點(diǎn),是橢圓上任一點(diǎn),從引外角平分線的垂線,垂足為,則點(diǎn)的軌跡為()A.圓 B.兩個(gè)圓C.橢圓 D.兩個(gè)橢圓二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量x,y滿足約束條件則的最大值為___________.14.經(jīng)過、兩點(diǎn)的直線斜率為______.15.我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了一個(gè)原理“冪勢(shì)既同,則積不容異”,即夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,則該幾何體的體積為________.16.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點(diǎn),,,,則異面直線AB與EF所成的角為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題,,命題,.若p、q都為真命題,求實(shí)數(shù)m的取值范圍.18.(12分)已知數(shù)列滿足,,,n為正整數(shù).(1)證明:數(shù)列是等比數(shù)列,并求通項(xiàng)公式;(2)證明:數(shù)列中的任意三項(xiàng),,都不成等差數(shù)列;(3)若關(guān)于正整數(shù)n的不等式的解集中有且僅有三個(gè)元素,求實(shí)數(shù)m的取值范圍;19.(12分)已知橢圓,點(diǎn)在上,,且(1)求出直線所過定點(diǎn)的坐標(biāo);(不需要證明)(2)過A點(diǎn)作的垂線,垂足為,是否存在點(diǎn),使得為定值?若存在,求出的值;若不存在,說明理由.20.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項(xiàng)和;(2)若以數(shù)列中的相鄰兩項(xiàng),構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同21.(12分)若是雙曲線的兩個(gè)焦點(diǎn).(1)若雙曲線上一點(diǎn)到它的一個(gè)焦點(diǎn)的距離等于10,求點(diǎn)到另一個(gè)焦點(diǎn)距離;(2)如圖若是雙曲線左支上一點(diǎn),且,求的面積.22.(10分)求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程(1)中心在原點(diǎn),實(shí)軸在軸上,一個(gè)焦點(diǎn)在直線上的等軸雙曲線;(2)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,且它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn);(3)經(jīng)過點(diǎn)拋物線

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.2、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點(diǎn)處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.3、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因?yàn)樵陔p曲線中,因?yàn)?,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.4、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C5、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C6、A【解析】根據(jù)函數(shù)的定義域及零點(diǎn)的情況即可得到答案.【詳解】函數(shù)的定義域?yàn)椋瑒t排除選項(xiàng)、,當(dāng)時(shí),,則在上單調(diào)遞減,且,,由零點(diǎn)存在定理可知在上存在一個(gè)零點(diǎn),則排除,故選:.7、B【解析】由題可知10組隨機(jī)數(shù)中表示“3例心臟手術(shù)全部成功”的有8組,即求.【詳解】由題意,10組隨機(jī)數(shù):812,832,569,683,271,989,730,537,925,907,表示“3例心臟手術(shù)全部成功”的有:812,832,569,683,271,989,537,925,故8個(gè),故估計(jì)“3例心臟手術(shù)全部成功”的概率為.故選:B.8、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因?yàn)椋?,故,解得,故,故選:D.9、B【解析】對(duì)求導(dǎo),取得函數(shù)在上有極值的等價(jià)條件,再根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:,則,令,可得,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因?yàn)?,但是由推不出,因此是函?shù)在上有極值的必要不充分條件故選:B10、A【解析】作出不等式組的可行域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標(biāo)函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當(dāng)直線經(jīng)過點(diǎn)時(shí),直線的截距最小,則,故選:11、A【解析】用空間直角坐標(biāo)系看正四棱柱,根據(jù)向量數(shù)量積進(jìn)行計(jì)算即可.【詳解】建立空間直角坐標(biāo)系,為原點(diǎn),正四棱柱的三個(gè)邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個(gè)數(shù)為1.故選:A.12、A【解析】設(shè)的延長線交的延長線于點(diǎn),由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點(diǎn)的軌跡是以為圓心,以為半徑的圓【詳解】是焦點(diǎn)為、的橢圓上一點(diǎn)為的外角平分線,,設(shè)的延長線交的延長線于點(diǎn),如圖,,,,由題意知是△的中位線,,點(diǎn)的軌跡是以為圓心,以為半徑的圓故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)線性約束條件畫出可行域,把目標(biāo)函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時(shí)即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當(dāng)直線過點(diǎn)時(shí),有最大值,且最大值為.故答案為:.14、【解析】利用斜率公式可求得結(jié)果.【詳解】由斜率公式可知,直線的斜率為.故答案為:.15、【解析】根據(jù)圓錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長為l,高為h,底面半徑為r,因?yàn)閳A錐的側(cè)面展開圖是一個(gè)半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:16、【解析】取的中點(diǎn),連結(jié),由分別為的中點(diǎn),可得(或其補(bǔ)角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點(diǎn),連結(jié)由分別為的中點(diǎn),則所以(或其補(bǔ)角)為異面直線AB與EF所成的角由分別是的中點(diǎn),則,又在中,,則所以,又,所以在直角中,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】先求出命題為真時(shí),的取值范圍,再取交集可得答案.【詳解】若命題,為真命題,則,解得;若命題,為真命題,則命題,為假命題,即方程無實(shí)數(shù)根,因此,,解得.又p、q都為真命題,所以實(shí)數(shù)m的取值范圍是.【點(diǎn)睛】本題考查全稱命題與特稱命題的真假求參數(shù)值、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.18、(1)證明見解析;(2)證明見解析(3)【解析】(1)將所給等式變形為,根據(jù)等比數(shù)列的定義即可證明結(jié)論;(2)假設(shè)存在,,成等差數(shù)列,根據(jù)等差數(shù)列的性質(zhì)可推出矛盾,故說明假設(shè)錯(cuò)誤。從而證明原結(jié)論;(3)求出n=1,2,3,4時(shí)的情況,再結(jié)合時(shí),,即可求得結(jié)果.【小問1詳解】由已知可知,顯然有,否則數(shù)列不可能是等比數(shù)列;因?yàn)?,,故可得,由得:,即有,所以?shù)列等比數(shù)列,且;【小問2詳解】假設(shè)存在,,成等差數(shù)列,則,即,整理得,即,而是奇數(shù),故上式左側(cè)是奇數(shù),右側(cè)是一個(gè)偶數(shù),不可能相等,故數(shù)列中的任意三項(xiàng),,都不成等差數(shù)列;【小問3詳解】關(guān)于正整數(shù)n的不等式,即,當(dāng)n=1時(shí),;當(dāng)n=2時(shí),;當(dāng)n=3時(shí),;當(dāng)n=4時(shí),,并且當(dāng)時(shí),,因關(guān)于正整數(shù)n的不等式的解集中有且僅有三個(gè)元素,故.19、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理列出方程,求出定點(diǎn)坐標(biāo),當(dāng)斜率不存在時(shí),設(shè)出點(diǎn)的坐標(biāo)進(jìn)行求解;(2)結(jié)合第一問的定點(diǎn)坐標(biāo),結(jié)合直角三角形斜邊中線得到存在點(diǎn),使得為定值,求出結(jié)果.【小問1詳解】設(shè)點(diǎn),若直線斜率存在時(shí),設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,因?yàn)?,所以,即,根?jù),代入整理可得:,所以,整理化簡得:,因?yàn)椴辉谥本€上,所以,故,于是的方程為,所以直線過定點(diǎn)直線過定點(diǎn).當(dāng)直線的斜率不存在時(shí),可得,由得:,得,結(jié)合可得:,解得:或(舍).此時(shí)直線過點(diǎn)【小問2詳解】由(1)可知因?yàn)?,取中點(diǎn),則此時(shí),【點(diǎn)睛】直線過定點(diǎn)問題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時(shí),設(shè)出直線為,聯(lián)立后用韋達(dá)定理得到兩根之和與兩根之積,結(jié)合題干條件得到等量關(guān)系,求出的關(guān)系,進(jìn)而得到定點(diǎn)坐標(biāo).20、(1);(2)證明過程見解析.【解析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)、等比數(shù)列和等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可;(2)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合雙曲線漸近線方程和離心率公式進(jìn)行證明即可.【小問1詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,所以,因此,所以,所以;【小?詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.21、(1)(2)【解析】(1)利用雙曲線定義,根據(jù)點(diǎn)到一個(gè)焦點(diǎn)的距離求點(diǎn)到另一個(gè)焦點(diǎn)的距離即可;(2)先根據(jù)定義得到,兩邊平方求得,即證,,再計(jì)算直角三角形面積即可.【小問1詳解】是雙曲線的兩個(gè)焦點(diǎn),則,點(diǎn)M到它的一個(gè)焦點(diǎn)的距離等于10,設(shè)點(diǎn)到另一個(gè)焦點(diǎn)的距離為,則由雙曲線定義可知,,解得或(舍去)即點(diǎn)到另一個(gè)焦點(diǎn)的距離為;【小問2詳解】P是雙曲線左支上的點(diǎn),則,則,而,所以,即,所以為直角三角形,,所以.22、(1)(2)(3)或【解析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論