2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校 數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁
2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校 數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁
2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校 數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁
2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校 數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁
2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校 數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省馬鞍山中加雙語學(xué)校數(shù)學(xué)高二上期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,則邊的長等于()A. B.C. D.22.已知,則點(diǎn)到平面的距離為()A. B.C. D.3.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計(jì)劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦4.已知拋物線的準(zhǔn)線方程為,則此拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.5.已知雙曲線的虛軸長是實(shí)軸長的2倍,則實(shí)數(shù)的值是A. B.C. D.6.若拋物線與直線:相交于兩點(diǎn),則弦的長為()A.6 B.8C. D.7.在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.8.已知數(shù)列滿足,且,為其前n項(xiàng)的和,則()A. B.C. D.9.在等差數(shù)列中,,則()A.6 B.3C.2 D.110.從1,2,3,4,5中任取2個(gè)不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.11.若函數(shù)在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B.C. D.12.的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的一個(gè)焦點(diǎn)為,則p的值為______14.已知雙曲線的左,右焦點(diǎn)分別為,,右焦點(diǎn)到一條漸近線的距離是,則其離心率的值是______;若點(diǎn)P是雙曲線C上一點(diǎn),滿足,,則雙曲線C的方程為______15.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《算法九章·商功》中,后人稱之為“三角垛”.已知某“三角垛”的最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球……設(shè)各層(從上往下)球數(shù)構(gòu)成一個(gè)數(shù)列,則___________,___________.16.設(shè)為三角形的一個(gè)內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓E:的離心率,且右焦點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)四邊形的頂點(diǎn)在橢圓上,且對角線,過原點(diǎn),若,證明:四邊形的面積為定值.18.(12分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和19.(12分)已知圓經(jīng)過點(diǎn)和,且圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)直線過點(diǎn),且與圓相切,求直線的方程;(3)設(shè)直線與圓相交于兩點(diǎn),點(diǎn)為圓上的一動(dòng)點(diǎn),求的面積的最大值20.(12分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an}的前n項(xiàng)和Sn21.(12分)如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請說明理由.22.(10分)已知橢圓經(jīng)過點(diǎn),橢圓E的一個(gè)焦點(diǎn)為.(1)求橢圓E的方程;(2)若直線l過點(diǎn)且與橢圓E交于兩點(diǎn).求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A2、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A3、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因?yàn)槿ツ甑碾娏ο臑榍撸S計(jì)劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D4、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因?yàn)閽佄锞€的準(zhǔn)線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,5、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實(shí)軸長的2倍,所以,即,所以故選C.考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì).6、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B7、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D8、B【解析】根據(jù)等比數(shù)列的前n項(xiàng)和公式即可求解.【詳解】由題可知是首項(xiàng)為2,公比為3的等比數(shù)列,則.故選:B.9、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B10、B【解析】利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從中任取個(gè)不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,屬于基礎(chǔ)題.11、A【解析】由函數(shù)在上單調(diào)遞增,可得,從而可求出實(shí)數(shù)的取值范圍【詳解】由,得,因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立,即恒成立,因?yàn)?,所以,所以,所以?shí)數(shù)的取值范圍為,故選:A12、D【解析】利用正弦定理邊化角,角化邊計(jì)算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:314、①.##1.5②.【解析】求得焦點(diǎn)到漸近線的距離可得,計(jì)算即可求得離心率,由雙曲線的定義可求得,計(jì)算即可得出結(jié)果.【詳解】雙曲線的漸近線方程為,即,焦點(diǎn)到漸近線的距離為,又,,,,.雙曲線上任意一點(diǎn)到兩焦點(diǎn)距離之差的絕對值為,即,,即,解得:,由,解得:,.雙曲線C的方程為.故答案為:;.15、①.②.【解析】根據(jù),,得到,利用累加法和等差數(shù)列求和公式求出,再利用裂項(xiàng)抵消法進(jìn)行求和.【詳解】因?yàn)?,,,,,以上個(gè)式子累加,得,則;因?yàn)椋?故答案為:,.16、焦點(diǎn)在軸上的橢圓,焦點(diǎn)在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點(diǎn)在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點(diǎn)在x軸上的雙曲線.故答案為:焦點(diǎn)在y軸上橢圓,焦點(diǎn)在x軸上的雙曲線,兩條直線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組求解即可;(2)設(shè),代入,利用韋達(dá)定理,通過,結(jié)合,轉(zhuǎn)化求解即可【小問1詳解】【小問2詳解】設(shè),設(shè),代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值18、(1)證明見解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問1詳解】解:數(shù)列滿足,∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,,即;∴【小問2詳解】解:,,,,19、(1)(2)或(3)【解析】(1)解法一,根據(jù)題意設(shè)圓的標(biāo)準(zhǔn)方程為,進(jìn)而待定系數(shù)法求解即可;解法二:由題知圓心在線段的垂直平分線上,進(jìn)而結(jié)合題意得圓的圓心與半徑,寫出方程;(2)分直線的斜率存在與不存在兩種情況討論求解即可;(3)由幾何法求弦長得,進(jìn)而到直線距離的最大值為,再計(jì)算面積即可.【小問1詳解】解:解法一:設(shè)圓的標(biāo)準(zhǔn)方程為,由已知得,解得,所以圓的標(biāo)準(zhǔn)方程為;解法二:由圓經(jīng)過點(diǎn)和,可知圓心在線段的垂直平分線上,將代入,得,即,半徑,所以圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:當(dāng)直線的斜率存在時(shí),設(shè),即,由直線與圓相切,得,解得,此時(shí),當(dāng)直線的斜率不存在時(shí),直線顯然與圓相切所以直線的方程為或;【小問3詳解】解:圓心到直線的距離,所以,則點(diǎn)到直線距離的最大值為,所以的面積的最大值20、(1)(2)【解析】(1)根據(jù)遞推關(guān)系式可得,再由等差數(shù)列的定義以及通項(xiàng)公式即可求解.(2)利用錯(cuò)位相減法即可求解.【小問1詳解】(1),即,所以數(shù)列為等差數(shù)列,公差為1,首項(xiàng)為1,所以,即.【小問2詳解】令,所以,所以21、(1)證明見解析.(2)存在點(diǎn),為線段中點(diǎn)【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,因?yàn)槠矫妫云矫嫫矫?(2)在中,由,為的中點(diǎn),可得.又因?yàn)槠矫嫫矫妫移矫嫫矫妫云矫?,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點(diǎn)使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點(diǎn)且為線段中點(diǎn)時(shí)使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應(yīng)用,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論